BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 31743095)

  • 1. Comparison of Training Monitoring and Prescription Methods in Sprint Kayaking.
    Hogan C; Binnie MJ; Doyle M; Lester L; Peeling P
    Int J Sports Physiol Perform; 2020 May; 15(5):654-662. PubMed ID: 31743095
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heart rate and stroke rate misrepresent supramaximal sprint kayak training as quantified by power.
    Hogan C; Binnie MJ; Doyle M; Lester L; Peeling P
    Eur J Sport Sci; 2021 May; 21(5):656-665. PubMed ID: 32538301
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantifying sprint kayak training on a flowing river: Exploring the utility of novel power measures and its relationship to measures of relative boat speed.
    Hogan C; Binnie MJ; Doyle M; Peeling P
    Eur J Sport Sci; 2022 Nov; 22(11):1668-1677. PubMed ID: 34487478
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Training-Intensity Distribution in Road Cyclists: Objective Versus Subjective Measures.
    Sanders D; Myers T; Akubat I
    Int J Sports Physiol Perform; 2017 Oct; 12(9):1232-1237. PubMed ID: 28253026
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of Varying the Step Duration on the Determination of Lactate Thresholds in Elite Rowers.
    Bourdon PC; Woolford SM; Buckley JD
    Int J Sports Physiol Perform; 2018 Jul; 13(6):687-693. PubMed ID: 29035635
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mean maximal power from an on-water 1000-m time-trial predicts lactate threshold power in well-trained flat-water sprint kayak athletes.
    Hogan C; Binnie MJ; Doyle M; Peeling P
    Eur J Sport Sci; 2022 Apr; 22(4):549-558. PubMed ID: 33476251
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Training-intensity distribution during an ironman season: relationship with competition performance.
    Muñoz I; Cejuela R; Seiler S; Larumbe E; Esteve-Lanao J
    Int J Sports Physiol Perform; 2014 Mar; 9(2):332-9. PubMed ID: 23921084
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Methods for quantifying training in sprint kayak.
    Borges TO; Bullock N; Duff C; Coutts AJ
    J Strength Cond Res; 2014 Feb; 28(2):474-82. PubMed ID: 24476743
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cardiac Parasympathetic and Anaerobic Performance Recovery After High-Intensity Exercise in Rowers.
    Holt AC; Plews DJ; Oberlin-Brown KT; Merien F; Kilding AE
    Int J Sports Physiol Perform; 2019 Mar; 14(3):331-338. PubMed ID: 30160561
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The efficacy of ergometry determined heart rates for flatwater kayak training.
    van Someren KA; Oliver JE
    Int J Sports Med; 2002 Jan; 23(1):28-32. PubMed ID: 11774063
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Practical Model of Low-Volume Paddling-Based Sprint Interval Training Improves Aerobic and Anaerobic Performances in Professional Female Canoe Polo Athletes.
    Sheykhlouvand M; Khalili E; Gharaat M; Arazi H; Khalafi M; Tarverdizadeh B
    J Strength Cond Res; 2018 Aug; 32(8):2375-2382. PubMed ID: 29239986
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Demarcation of Intensity From 3 to 5 Zones Aids in Understanding Physiological Performance Progression in Highly Trained Under-23 Rowing Athletes.
    Watts SP; Binnie MJ; Goods PSR; Hewlett J; Fahey-Gilmour J; Peeling P
    J Strength Cond Res; 2023 Nov; 37(11):e593-e600. PubMed ID: 37463357
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Low-Volume High-Intensity Interval Versus Continuous Endurance Training: Effects on Hematological and Cardiorespiratory System Adaptations in Professional Canoe Polo Athletes.
    Sheykhlouvand M; Gharaat M; Khalili E; Agha-Alinejad H; Rahmaninia F; Arazi H
    J Strength Cond Res; 2018 Jul; 32(7):1852-1860. PubMed ID: 28700514
    [TBL] [Abstract][Full Text] [Related]  

  • 14. From heart-rate data to training quantification: a comparison of 3 methods of training-intensity analysis.
    Sylta O; Tønnessen E; Seiler S
    Int J Sports Physiol Perform; 2014 Jan; 9(1):100-7. PubMed ID: 24408353
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of an On-Water Graded Exercise Test for Flat-Water Sprint Kayak Athletes.
    Winchcombe CE; Binnie MJ; Doyle MM; Hogan C; Peeling P
    Int J Sports Physiol Perform; 2019 Oct; 14(9):1244-1249. PubMed ID: 30860403
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparison of laboratory-based kayak testing protocols.
    Jones MJ; Peeling P
    Int J Sports Physiol Perform; 2014 Mar; 9(2):346-51. PubMed ID: 23920488
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The integration of training and off-training activities substantially alters training volume and load analysis in elite rowers.
    Treff G; Leppich R; Winkert K; Steinacker JM; Mayer B; Sperlich B
    Sci Rep; 2021 Aug; 11(1):17218. PubMed ID: 34446761
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relationship of exercise test variables to cycling performance in an Ironman triathlon.
    Laursen PB; Rhodes EC; Langill RH; McKenzie DC; Taunton JE
    Eur J Appl Physiol; 2002 Aug; 87(4-5):433-40. PubMed ID: 12172884
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of Training Load Distribution on Aerobic Fitness Measures in Hurling Players.
    Malone S; Hughes B; Collins K
    J Strength Cond Res; 2019 Mar; 33(3):825-830. PubMed ID: 28570496
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Do elite endurance athletes report their training accurately?
    Sylta Ø; Tønnessen E; Seiler S
    Int J Sports Physiol Perform; 2014 Jan; 9(1):85-92. PubMed ID: 23921186
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.