These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 31743350)

  • 41. Low temperature hybrid 3D printing of hierarchically porous bone tissue engineering scaffolds with
    Lai J; Wang C; Liu J; Chen S; Liu C; Huang X; Wu J; Pan Y; Xie Y; Wang M
    Biofabrication; 2022 Aug; 14(4):. PubMed ID: 35896092
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effect of layer thickness and printing orientation on mechanical properties and dimensional accuracy of 3D printed porous samples for bone tissue engineering.
    Farzadi A; Solati-Hashjin M; Asadi-Eydivand M; Abu Osman NA
    PLoS One; 2014; 9(9):e108252. PubMed ID: 25233468
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Indirect rapid prototyping of biphasic calcium phosphate scaffolds as bone substitutes: influence of phase composition, macroporosity and pore geometry on mechanical properties.
    Schumacher M; Deisinger U; Detsch R; Ziegler G
    J Mater Sci Mater Med; 2010 Dec; 21(12):3119-27. PubMed ID: 20953674
    [TBL] [Abstract][Full Text] [Related]  

  • 44. 3D-Printing Composite Polycaprolactone-Decellularized Bone Matrix Scaffolds for Bone Tissue Engineering Applications.
    Rindone AN; Nyberg E; Grayson WL
    Methods Mol Biol; 2018; 1577():209-226. PubMed ID: 28493213
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Three-Dimensional Extrusion Printing of Porous Scaffolds Using Storable Ceramic Inks.
    Diaz-Gomez L; Elizondo ME; Kontoyiannis PD; Koons GL; Dacunha-Marinho B; Zhang X; Ajayan P; Jansen JA; Melchiorri AJ; Mikos AG
    Tissue Eng Part C Methods; 2020 Jun; 26(6):292-305. PubMed ID: 32326874
    [TBL] [Abstract][Full Text] [Related]  

  • 46. 3D extrusion printing of density gradients by variation of sinusoidal printing paths for tissue engineering and beyond.
    Kilian D; Holtzhausen S; Groh W; Sembdner P; Czichy C; Lode A; Stelzer R; Gelinsky M
    Acta Biomater; 2023 Mar; 158():308-323. PubMed ID: 36563775
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Pore architecture effects on chondrogenic potential of patient-specific 3-dimensionally printed porous tissue bioscaffolds for auricular tissue engineering.
    Zopf DA; Flanagan CL; Mitsak AG; Brennan JR; Hollister SJ
    Int J Pediatr Otorhinolaryngol; 2018 Nov; 114():170-174. PubMed ID: 30262359
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Microstructure and compression properties of 3D powder printed Ti-6Al-4V scaffolds with designed porosity: Experimental and computational analysis.
    Barui S; Chatterjee S; Mandal S; Kumar A; Basu B
    Mater Sci Eng C Mater Biol Appl; 2017 Jan; 70(Pt 1):812-823. PubMed ID: 27770959
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Computer-aided multiple-head 3D printing system for printing of heterogeneous organ/tissue constructs.
    Jung JW; Lee JS; Cho DW
    Sci Rep; 2016 Feb; 6():21685. PubMed ID: 26899876
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Fabrication of polylactic acid (PLA)-based porous scaffold through the combination of traditional bio-fabrication and 3D printing technology for bone regeneration.
    Zhou X; Zhou G; Junka R; Chang N; Anwar A; Wang H; Yu X
    Colloids Surf B Biointerfaces; 2021 Jan; 197():111420. PubMed ID: 33113493
    [TBL] [Abstract][Full Text] [Related]  

  • 51. New paradigms in hierarchical porous scaffold design for tissue engineering.
    Yoo D
    Mater Sci Eng C Mater Biol Appl; 2013 Apr; 33(3):1759-72. PubMed ID: 23827634
    [TBL] [Abstract][Full Text] [Related]  

  • 52. 3D printed porous ceramic scaffolds for bone tissue engineering: a review.
    Wen Y; Xun S; Haoye M; Baichuan S; Peng C; Xuejian L; Kaihong Z; Xuan Y; Jiang P; Shibi L
    Biomater Sci; 2017 Aug; 5(9):1690-1698. PubMed ID: 28686244
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Additive manufacturing of hierarchical injectable scaffolds for tissue engineering.
    Béduer A; Piacentini N; Aeberli L; Da Silva A; Verheyen CA; Bonini F; Rochat A; Filippova A; Serex L; Renaud P; Braschler T
    Acta Biomater; 2018 Aug; 76():71-79. PubMed ID: 29883809
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Applications of nanotechnology in 3D printed tissue engineering scaffolds.
    Laird NZ; Acri TM; Chakka JL; Quarterman JC; Malkawi WI; Elangovan S; Salem AK
    Eur J Pharm Biopharm; 2021 Apr; 161():15-28. PubMed ID: 33549706
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A Novel 3D-bioprinted Porous Nano Attapulgite Scaffolds with Good Performance for Bone Regeneration.
    Wang Z; Hui A; Zhao H; Ye X; Zhang C; Wang A; Zhang C
    Int J Nanomedicine; 2020; 15():6945-6960. PubMed ID: 33061361
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Direct three-dimensional printing of polymeric scaffolds with nanofibrous topography.
    Prasopthum A; Shakesheff KM; Yang J
    Biofabrication; 2018 Jan; 10(2):025002. PubMed ID: 29235445
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Open-source three-dimensional printing of biodegradable polymer scaffolds for tissue engineering.
    Trachtenberg JE; Mountziaris PM; Miller JS; Wettergreen M; Kasper FK; Mikos AG
    J Biomed Mater Res A; 2014 Dec; 102(12):4326-35. PubMed ID: 25493313
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Collagen density gradient on three-dimensional printed poly(ε-caprolactone) scaffolds for interface tissue engineering.
    D'Amora U; D'Este M; Eglin D; Safari F; Sprecher CM; Gloria A; De Santis R; Alini M; Ambrosio L
    J Tissue Eng Regen Med; 2018 Feb; 12(2):321-329. PubMed ID: 28486746
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A robust, autonomous, volumetric quality assurance method for 3D printed porous scaffolds.
    Zhang N; Singh S; Liu S; Zbijewski W; Grayson WL
    3D Print Med; 2022 Apr; 8(1):9. PubMed ID: 35384521
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Additive manufacturing of hydroxyapatite-chitosan-genipin composite scaffolds for bone tissue engineering applications.
    Zafeiris K; Brasinika D; Karatza A; Koumoulos E; Karoussis IK; Kyriakidou K; Charitidis CA
    Mater Sci Eng C Mater Biol Appl; 2021 Feb; 119():111639. PubMed ID: 33321677
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.