These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 31743424)
21. Learning Optimal Group-structured Individualized Treatment Rules with Many Treatments. Ma H; Zeng D; Liu Y J Mach Learn Res; 2023; 24():. PubMed ID: 37588020 [TBL] [Abstract][Full Text] [Related]
22. Outcome-Weighted Learning for Personalized Medicine with Multiple Treatment Options. Zhou X; Wang Y; Zeng D Proc Int Conf Data Sci Adv Anal; 2018 Oct; 2018():565-574. PubMed ID: 30931437 [TBL] [Abstract][Full Text] [Related]
23. Ascertaining properties of weighting in the estimation of optimal treatment regimes under monotone missingness. Dong L; Laber E; Goldberg Y; Song R; Yang S Stat Med; 2020 Nov; 39(25):3503-3520. PubMed ID: 32729973 [TBL] [Abstract][Full Text] [Related]
26. Stabilized direct learning for efficient estimation of individualized treatment rules. Shah KS; Fu H; Kosorok MR Biometrics; 2023 Dec; 79(4):2843-2856. PubMed ID: 36585916 [TBL] [Abstract][Full Text] [Related]
27. Residual Weighted Learning for Estimating Individualized Treatment Rules. Zhou X; Mayer-Hamblett N; Khan U; Kosorok MR J Am Stat Assoc; 2017; 112(517):169-187. PubMed ID: 28943682 [TBL] [Abstract][Full Text] [Related]
28. The future of Cochrane Neonatal. Soll RF; Ovelman C; McGuire W Early Hum Dev; 2020 Nov; 150():105191. PubMed ID: 33036834 [TBL] [Abstract][Full Text] [Related]
29. Estimation and evaluation of individualized treatment rules following multiple imputation. Shen J; Hubbard RA; Linn KA Stat Med; 2023 Oct; 42(23):4236-4256. PubMed ID: 37496450 [TBL] [Abstract][Full Text] [Related]
30. Optimal and/or efficient three treatment crossover designs for five carryover models. Gondaliya J; Divecha J J Biopharm Stat; 2020 May; 30(3):445-461. PubMed ID: 31721628 [TBL] [Abstract][Full Text] [Related]
32. Tree based weighted learning for estimating individualized treatment rules with censored data. Cui Y; Zhu R; Kosorok M Electron J Stat; 2017; 11(2):3927-3953. PubMed ID: 29403568 [TBL] [Abstract][Full Text] [Related]
33. Personalized treatment selection using data from crossover designs with carry-over effects. Siriwardhana C; Kulasekera KB; Datta S Stat Med; 2019 Dec; 38(28):5391-5412. PubMed ID: 31637762 [TBL] [Abstract][Full Text] [Related]
34. Meta-analysis combining parallel and crossover trials using generalised estimating equation method. Curtin F Res Synth Methods; 2017 Sep; 8(3):312-320. PubMed ID: 28585280 [TBL] [Abstract][Full Text] [Related]
35. A matching-based machine learning approach to estimating optimal dynamic treatment regimes with time-to-event outcomes. Wang X; Lee H; Haaland B; Kerrigan K; Puri S; Akerley W; Shen J Stat Methods Med Res; 2024 May; 33(5):794-806. PubMed ID: 38502008 [TBL] [Abstract][Full Text] [Related]
36. On using electronic health records to improve optimal treatment rules in randomized trials. Wu P; Zeng D; Fu H; Wang Y Biometrics; 2020 Dec; 76(4):1075-1086. PubMed ID: 32365232 [TBL] [Abstract][Full Text] [Related]
37. Randomized, placebo-controlled, parallel group versus crossover study designs for the study of dementia in Parkinson's disease. Putt ME; Ravina B Control Clin Trials; 2002 Apr; 23(2):111-26. PubMed ID: 11943439 [TBL] [Abstract][Full Text] [Related]
38. Model selection for survival individualized treatment rules using the jackknife estimator. Honvoh GD; Cho H; Kosorok MR BMC Med Res Methodol; 2022 Dec; 22(1):328. PubMed ID: 36550398 [TBL] [Abstract][Full Text] [Related]
39. Estimating personalized diagnostic rules depending on individualized characteristics. Liu Y; Wang Y; Huang C; Zeng D Stat Med; 2017 Mar; 36(7):1099-1117. PubMed ID: 27917508 [TBL] [Abstract][Full Text] [Related]
40. Overview of modern approaches for identifying and evaluating heterogeneous treatment effects from clinical data. Lipkovich I; Svensson D; Ratitch B; Dmitrienko A Clin Trials; 2023 Aug; 20(4):380-393. PubMed ID: 37203150 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]