These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 31743562)

  • 1. An Inorganic Biopolymer Polyphosphate Controls Positively Charged Protein Phase Transitions.
    Wang X; Shi C; Mo J; Xu Y; Wei W; Zhao J
    Angew Chem Int Ed Engl; 2020 Feb; 59(7):2679-2683. PubMed ID: 31743562
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hierarchical Assembly of Flexible Biopolymer Polyphosphate-Manganese into Nanosheets.
    Wang J; Tao Y; Juan Y; Zhou H; Zhao X; Cheng X; Wang X; Quan X; Li J; Huang K; Wei W; Zhao J
    Small; 2022 Oct; 18(41):e2203200. PubMed ID: 36084167
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formation of an Organic-Inorganic Biopolymer: Polyhydroxybutyrate-Polyphosphate.
    Hildenbrand JC; Reinhardt S; Jendrossek D
    Biomacromolecules; 2019 Sep; 20(9):3253-3260. PubMed ID: 31062966
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inorganic polyphosphate in the microbial world. Emerging roles for a multifaceted biopolymer.
    Albi T; Serrano A
    World J Microbiol Biotechnol; 2016 Feb; 32(2):27. PubMed ID: 26748804
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Possible mechanisms of polyphosphate-induced amyloid fibril formation of β
    Zhang CM; Yamaguchi K; So M; Sasahara K; Ito T; Yamamoto S; Narita I; Kardos J; Naiki H; Goto Y
    Proc Natl Acad Sci U S A; 2019 Jun; 116(26):12833-12838. PubMed ID: 31182591
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A mammalian model reveals inorganic polyphosphate channeling into the nucleolus and induction of a hyper-condensate state.
    Borghi F; Azevedo C; Johnson E; Burden JJ; Saiardi A
    Cell Rep Methods; 2024 Jul; 4(7):100814. PubMed ID: 38981472
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inorganic polyphosphates: biologically active biopolymers for biomedical applications.
    Wang X; Schröder HC; Schloßmacher U; Müller WE
    Prog Mol Subcell Biol; 2013; 54():261-94. PubMed ID: 24420717
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Liquid-Liquid Phase Separation (LLPS)-Driven Fibrilization of Amyloid-β Protein.
    Sudhakar S; Manohar A; Mani E
    ACS Chem Neurosci; 2023 Oct; 14(19):3655-3664. PubMed ID: 37718544
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proteins with CHADs (Conserved Histidine α-Helical Domains) Are Attached to Polyphosphate Granules
    Tumlirsch T; Jendrossek D
    Appl Environ Microbiol; 2017 Apr; 83(7):. PubMed ID: 28130300
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dependence of inorganic polyphosphate chain length on the orthophosphate content in the culture medium of the yeast Saccharomyces cerevisiae.
    Vagabov VM; Trilisenko LV; Kulaev IS
    Biochemistry (Mosc); 2000 Mar; 65(3):349-54. PubMed ID: 10739478
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The morphogenetically active polymer, inorganic polyphosphate complexed with GdCl3, as an inducer of hydroxyapatite formation in vitro.
    Wang X; Huang J; Wang K; Neufurth M; Schröder HC; Wang S; Müller WEG
    Biochem Pharmacol; 2016 Feb; 102():97-106. PubMed ID: 26731190
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transformation of Amorphous Polyphosphate Nanoparticles into Coacervate Complexes: An Approach for the Encapsulation of Mesenchymal Stem Cells.
    Müller WEG; Wang S; Tolba E; Neufurth M; Ackermann M; Muñoz-Espí R; Lieberwirth I; Glasser G; Schröder HC; Wang X
    Small; 2018 Jul; 14(27):e1801170. PubMed ID: 29847707
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Liquid-liquid phase separation of tau protein: The crucial role of electrostatic interactions.
    Boyko S; Qi X; Chen TH; Surewicz K; Surewicz WK
    J Biol Chem; 2019 Jul; 294(29):11054-11059. PubMed ID: 31097543
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Process optimization and protein engineering mitigated manufacturing challenges of a monoclonal antibody with liquid-liquid phase separation issue by disrupting inter-molecule electrostatic interactions.
    Du Q; Damschroder M; Pabst TM; Hunter AK; Wang WK; Luo H
    MAbs; 2019; 11(4):789-802. PubMed ID: 30913985
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inorganic Polyphosphate: Coacervate Formation and Functional Significance in Nanomedical Applications.
    Schröder HC; Neufurth M; Zhou H; Wang S; Wang X; Müller WEG
    Int J Nanomedicine; 2022; 17():5825-5850. PubMed ID: 36474526
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Degradation and hemostatic properties of polyphosphate coacervates.
    Momeni A; Filiaggi MJ
    Acta Biomater; 2016 Sep; 41():328-41. PubMed ID: 27265150
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inorganic polyphosphate, a multifunctional polyanionic protein scaffold.
    Xie L; Jakob U
    J Biol Chem; 2019 Feb; 294(6):2180-2190. PubMed ID: 30425096
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polyphosphate Stabilizes Protein Unfolding Intermediates as Soluble Amyloid-like Oligomers.
    Yoo NG; Dogra S; Meinen BA; Tse E; Haefliger J; Southworth DR; Gray MJ; Dahl JU; Jakob U
    J Mol Biol; 2018 Oct; 430(21):4195-4208. PubMed ID: 30130556
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The biomaterial polyphosphate blocks stoichiometric binding of the SARS-CoV-2 S-protein to the cellular ACE2 receptor.
    Müller WEG; Neufurth M; Schepler H; Wang S; Tolba E; Schröder HC; Wang X
    Biomater Sci; 2020 Dec; 8(23):6603-6610. PubMed ID: 33231598
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modulation of mitochondrial ion transport by inorganic polyphosphate - essential role in mitochondrial permeability transition pore.
    Baev AY; Negoda A; Abramov AY
    J Bioenerg Biomembr; 2017 Feb; 49(1):49-55. PubMed ID: 26888154
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.