These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 31743629)

  • 1. Reprioritizing Risk and Benefit: The Future of Study Design in Early-Phase Cancer Research.
    Sisk BA; Dubois J; Hobbs BP; Kodish E
    Ethics Hum Res; 2019 Nov; 41(6):2-11. PubMed ID: 31743629
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Beyond the 3+3 method: expanded algorithms for dose- escalation in Phase I oncology trials of two agents.
    Braun TM; Alonzo TA
    Clin Trials; 2011 Jun; 8(3):247-59. PubMed ID: 21730075
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Revisiting the definition of dose-limiting toxicities in paediatric oncology phase I clinical trials: An analysis from the Innovative Therapies for Children with Cancer Consortium.
    Bautista F; Moreno L; Marshall L; Pearson ADJ; Geoerger B; Paoletti X
    Eur J Cancer; 2017 Nov; 86():275-284. PubMed ID: 29055843
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accelerated titration designs for phase I clinical trials in oncology.
    Simon R; Freidlin B; Rubinstein L; Arbuck SG; Collins J; Christian MC
    J Natl Cancer Inst; 1997 Aug; 89(15):1138-47. PubMed ID: 9262252
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparative study of adaptive trial designs for dose optimization.
    Zhang J; Chen X; Li B; Yan F
    Pharm Stat; 2023; 22(5):797-814. PubMed ID: 37156731
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SPA: Single patient acceleration in oncology dose-escalation trials.
    Mi G; Bian Y; Wang X; Zhang W
    Contemp Clin Trials; 2021 Jun; 105():106378. PubMed ID: 33823296
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hierarchical models for sharing information across populations in phase I dose-escalation studies.
    Cunanan KM; Koopmeiners JS
    Stat Methods Med Res; 2018 Nov; 27(11):3447-3459. PubMed ID: 28480828
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dose-finding based on feasibility and late-onset toxicity in adoptive cell therapy trials.
    Bagley EM; Wages NA
    J Biopharm Stat; 2024 Mar; 34(2):151-163. PubMed ID: 36879525
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oncology Combination Dose-Finding Study Design for Targeted and Immuno-Oncology Therapies.
    Zhou L; Reddy MB; Mittapalli RK; Yang J; Yin D
    Clin Pharmacol Ther; 2024 Jan; 115(1):29-35. PubMed ID: 37881828
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An IQ consortium analysis of starting dose selection for oncology small molecule first-in-patient trials suggests an alternative NOAEL-based method can be safe while reducing time to the recommended phase 2 dose.
    Jessen BA; Cornwell P; Redmond S; Visalli T; Lemper M; Bunch T; Hart T
    Cancer Chemother Pharmacol; 2023 Dec; 92(6):455-464. PubMed ID: 37505272
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Introduction of Oncology Dose-Finding Trial Designs].
    Takeda K
    Gan To Kagaku Ryoho; 2022 Apr; 49(4):365-370. PubMed ID: 35444116
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Model-Based Adaptive Optimal Design (MBAOD) Improves Combination Dose Finding Designs: an Example in Oncology.
    Pierrillas PB; Fouliard S; Chenel M; Hooker AC; Friberg LE; Karlsson MO
    AAPS J; 2018 Mar; 20(2):39. PubMed ID: 29516207
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel dose-finding designs and considerations on practical implementations in oncology clinical trials.
    Huang B; Bycott P; Talukder E
    J Biopharm Stat; 2017; 27(1):44-55. PubMed ID: 26882496
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A simulation-based comparison of the traditional method, Rolling-6 design and a frequentist version of the continual reassessment method with special attention to trial duration in pediatric Phase I oncology trials.
    Onar-Thomas A; Xiong Z
    Contemp Clin Trials; 2010 May; 31(3):259-70. PubMed ID: 20298812
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dose-finding designs for trials of molecularly targeted agents and immunotherapies.
    Chiuzan C; Shtaynberger J; Manji GA; Duong JK; Schwartz GK; Ivanova A; Lee SM
    J Biopharm Stat; 2017; 27(3):477-494. PubMed ID: 28166468
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Next generation oncology drug development: opportunities and challenges.
    Gutierrez ME; Kummar S; Giaccone G
    Nat Rev Clin Oncol; 2009 May; 6(5):259-65. PubMed ID: 19390552
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Risks and benefits associated with novel phase 1 oncology trial designs.
    Koyfman SA; Agrawal M; Garrett-Mayer E; Krohmal B; Wolf E; Emanuel EJ; Gross CP
    Cancer; 2007 Sep; 110(5):1115-24. PubMed ID: 17628485
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CRM2DIM: A SAS macro for implementing the dual-agent Bayesian continual reassessment method.
    Bayar MA; Ivanova A; Le Teuff G
    Comput Methods Programs Biomed; 2019 Jul; 176():211-223. PubMed ID: 31200907
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three-dose-cohort designs in cancer phase I trials.
    Huang B; Chappell R
    Stat Med; 2008 May; 27(12):2070-93. PubMed ID: 17764082
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adaptive dose modification for phase I clinical trials.
    Chu Y; Pan H; Yuan Y
    Stat Med; 2016 Sep; 35(20):3497-508. PubMed ID: 27027650
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.