These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

311 related articles for article (PubMed ID: 31743686)

  • 21. Overexpression, purification, enzymatic and microscopic characterization of recombinant mycobacterial F-ATP synthase.
    Saw WG; Wong CF; Dick T; Grüber G
    Biochem Biophys Res Commun; 2020 Feb; 522(2):374-380. PubMed ID: 31761325
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Probing the interaction of the diarylquinoline TMC207 with its target mycobacterial ATP synthase.
    Haagsma AC; Podasca I; Koul A; Andries K; Guillemont J; Lill H; Bald D
    PLoS One; 2011; 6(8):e23575. PubMed ID: 21858172
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Expanding the squaramide library as mycobacterial ATP synthase inhibitors: Innovative synthetic pathway and biological evaluation.
    Chasák J; Oorts L; Dak M; Šlachtová V; Bazgier V; Berka K; De Vooght L; Smiejkowska N; Calster KV; Van Moll L; Cappoen D; Cos P; Brulíková L
    Bioorg Med Chem; 2023 Nov; 95():117504. PubMed ID: 37871508
    [TBL] [Abstract][Full Text] [Related]  

  • 24. ATP Synthase, an Emerging Target in TB Drug Discovery: Review of SAR and Clinical Pharmacology of Diarylquinoline Inhibitors.
    Dhulap A; Banerjee P
    Curr Drug Targets; 2021; 22(11):1207-1221. PubMed ID: 33480344
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structural Elements Involved in ATP Hydrolysis Inhibition and ATP Synthesis of Tuberculosis and Nontuberculous Mycobacterial F-ATP Synthase Decipher New Targets for Inhibitors.
    Wong CF; Saw WG; Basak S; Sano M; Ueno H; Kerk HW; Litty D; Ragunathan P; Dick T; Müller V; Noji H; Grüber G
    Antimicrob Agents Chemother; 2022 Dec; 66(12):e0105622. PubMed ID: 36445139
    [TBL] [Abstract][Full Text] [Related]  

  • 26. ATP synthase in mycobacteria: special features and implications for a function as drug target.
    Lu P; Lill H; Bald D
    Biochim Biophys Acta; 2014 Jul; 1837(7):1208-18. PubMed ID: 24513197
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The c-Ring of the F1FO-ATP Synthase: Facts and Perspectives.
    Nesci S; Trombetti F; Ventrella V; Pagliarani A
    J Membr Biol; 2016 Apr; 249(1-2):11-21. PubMed ID: 26621635
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Atomic solution structure of Mycobacterium abscessus F-ATP synthase subunit ε and identification of Ep1MabF1 as a targeted inhibitor.
    Shin J; Harikishore A; Wong CF; Ragunathan P; Dick T; Grüber G
    FEBS J; 2022 Oct; 289(20):6308-6323. PubMed ID: 35612822
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Inhibition of M. tuberculosis and human ATP synthase by BDQ and TBAJ-587.
    Zhang Y; Lai Y; Zhou S; Ran T; Zhang Y; Zhao Z; Feng Z; Yu L; Xu J; Shi K; Wang J; Pang Y; Li L; Chen H; Guddat LW; Gao Y; Liu F; Rao Z; Gong H
    Nature; 2024 Jul; 631(8020):409-414. PubMed ID: 38961288
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Small organic molecules targeting the energy metabolism of Mycobacterium tuberculosis.
    Urban M; Šlachtová V; Brulíková L
    Eur J Med Chem; 2021 Feb; 212():113139. PubMed ID: 33422979
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Insights into the Physiology and Metabolism of a Mycobacterial Cell in an Energy-Compromised State.
    Patil V; Jain V
    J Bacteriol; 2019 Oct; 201(19):. PubMed ID: 31285242
    [No Abstract]   [Full Text] [Related]  

  • 32. Mutational Analysis of Mycobacterial F-ATP Synthase Subunit δ Leads to a Potent δ Enzyme Inhibitor.
    Harikishore A; Saw WG; Ragunathan P; Litty D; Dick T; Müller V; Grüber G
    ACS Chem Biol; 2022 Mar; 17(3):529-535. PubMed ID: 35148057
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Solution structure of subunit γ (γ(1-204)) of the Mycobacterium tuberculosis F-ATP synthase and the unique loop of γ(165-178), representing a novel TB drug target.
    Priya R; Biuković G; Manimekalai MS; Lim J; Rao SP; Grüber G
    J Bioenerg Biomembr; 2013 Feb; 45(1-2):121-9. PubMed ID: 23104121
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Unidirectional regulation of the F
    Zarco-Zavala M; Mendoza-Hoffmann F; García-Trejo JJ
    Biochim Biophys Acta Bioenerg; 2018 Sep; 1859(9):762-774. PubMed ID: 29886048
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Inhibition of ATP hydrolysis by thermoalkaliphilic F1Fo-ATP synthase is controlled by the C terminus of the epsilon subunit.
    Keis S; Stocker A; Dimroth P; Cook GM
    J Bacteriol; 2006 Jun; 188(11):3796-804. PubMed ID: 16707672
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Insights into the regulatory function of the
    Krah A; Zarco-Zavala M; McMillan DGG
    Open Biol; 2018 May; 8(5):. PubMed ID: 29769322
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mycobacterial Membrane Proteins QcrB and AtpE: Roles in Energetics, Antibiotic Targets, and Associated Mechanisms of Resistance.
    Bown L; Srivastava SK; Piercey BM; McIsaac CK; Tahlan K
    J Membr Biol; 2018 Feb; 251(1):105-117. PubMed ID: 29098330
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Molecular mechanistic insights into uncoupling of ion transport from ATP synthesis.
    Nath S
    Biophys Chem; 2018 Nov; 242():15-21. PubMed ID: 30195214
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structure and Mechanisms of F-Type ATP Synthases.
    Kühlbrandt W
    Annu Rev Biochem; 2019 Jun; 88():515-549. PubMed ID: 30901262
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structure of mycobacterial ATP synthase bound to the tuberculosis drug bedaquiline.
    Guo H; Courbon GM; Bueler SA; Mai J; Liu J; Rubinstein JL
    Nature; 2021 Jan; 589(7840):143-147. PubMed ID: 33299175
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.