These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 31743857)

  • 1. Overexpression of ThSAP30BP from Tamarix hispida improves salt tolerance.
    Liu Z; Lei X; Wang P; Wang Y; Lv J; Li X; Gao C
    Plant Physiol Biochem; 2020 Jan; 146():124-132. PubMed ID: 31743857
    [TBL] [Abstract][Full Text] [Related]  

  • 2.
    Lei X; Tan B; Liu Z; Wu J; Lv J; Gao C
    Front Plant Sci; 2021; 12():653791. PubMed ID: 34079567
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A ThDREB gene from Tamarix hispida improved the salt and drought tolerance of transgenic tobacco and T. hispida.
    Yang G; Yu L; Zhang K; Zhao Y; Guo Y; Gao C
    Plant Physiol Biochem; 2017 Apr; 113():187-197. PubMed ID: 28222350
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tamarix hispida zinc finger protein ThZFP1 participates in salt and osmotic stress tolerance by increasing proline content and SOD and POD activities.
    Zang D; Wang C; Ji X; Wang Y
    Plant Sci; 2015 Jun; 235():111-21. PubMed ID: 25900571
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An ERF transcription factor from Tamarix hispida, ThCRF1, can adjust osmotic potential and reactive oxygen species scavenging capability to improve salt tolerance.
    Qin L; Wang L; Guo Y; Li Y; Ümüt H; Wang Y
    Plant Sci; 2017 Dec; 265():154-166. PubMed ID: 29223337
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vacuolar membrane H
    Wang P; Guo Y; Wang Y; Gao C
    Plant Physiol Biochem; 2020 Dec; 157():370-378. PubMed ID: 33190056
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comprehensive Analysis of MYB Gene Family and Their Expressions Under Abiotic Stresses and Hormone Treatments in
    Zhang T; Zhao Y; Wang Y; Liu Z; Gao C
    Front Plant Sci; 2018; 9():1303. PubMed ID: 30283465
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comprehensive analysis of the stress associated protein (SAP) gene family in Tamarix hispida and the function of ThSAP6 in salt tolerance.
    Zhao X; Wang R; Zhang Y; Li Y; Yue Y; Zhou T; Wang C
    Plant Physiol Biochem; 2021 Aug; 165():1-9. PubMed ID: 34029940
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The transcription factor ThDOF8 binds to a novel cis-element and mediates molecular responses to salt stress in Tamarix hispida.
    Wang P; Wang D; Li Y; Li J; Liu B; Wang Y; Gao C
    J Exp Bot; 2024 May; 75(10):3171-3187. PubMed ID: 38400756
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Overexpression of ThMYB8 mediates salt stress tolerance by directly activating stress-responsive gene expression.
    Liu ZY; Li XP; Zhang TQ; Wang YY; Wang C; Gao CQ
    Plant Sci; 2021 Jan; 302():110668. PubMed ID: 33288032
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel ethylene-responsive factor from Tamarix hispida, ThERF1, is a GCC-box- and DRE-motif binding protein that negatively modulates abiotic stress tolerance in Arabidopsis.
    Wang L; Qin L; Liu W; Zhang D; Wang Y
    Physiol Plant; 2014 Sep; 152(1):84-97. PubMed ID: 24479715
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Overexpression of ThSCL32 confers salt stress tolerance by enhancing ThPHD3 gene expression in Tamarix hispida.
    Lei X; Fang J; Lv J; Li Z; Liu Z; Wang Y; Wang C; Gao C
    Tree Physiol; 2023 Aug; 43(8):1444-1453. PubMed ID: 37104646
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ThNAC12 from Tamarix hispida directly regulates ThPIP2;5 to enhance salt tolerance by modulating reactive oxygen species.
    Wang R; Zhang Y; Wang C; Wang YC; Wang LQ
    Plant Physiol Biochem; 2021 Jun; 163():27-35. PubMed ID: 33812224
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ThASR3 confers salt and osmotic stress tolerances in transgenic Tamarix and Arabidopsis.
    Zhang Y; Ma H; Zhou T; Zhu Z; Zhang Y; Zhao X; Wang C
    BMC Plant Biol; 2022 Dec; 22(1):586. PubMed ID: 36517747
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The
    Liu Z; Xie Q; Tang F; Wu J; Dong W; Wang C; Gao C
    Front Plant Sci; 2020; 11():597480. PubMed ID: 33537039
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ThDof1.4 and ThZFP1 constitute a transcriptional regulatory cascade involved in salt or osmotic stress in Tamarix hispida.
    Zang D; Wang L; Zhang Y; Zhao H; Wang Y
    Plant Mol Biol; 2017 Jul; 94(4-5):495-507. PubMed ID: 28578496
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A bHLH gene from Tamarix hispida improves abiotic stress tolerance by enhancing osmotic potential and decreasing reactive oxygen species accumulation.
    Ji X; Nie X; Liu Y; Zheng L; Zhao H; Zhang B; Huo L; Wang Y
    Tree Physiol; 2016 Feb; 36(2):193-207. PubMed ID: 26786541
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ThNAC13, a NAC Transcription Factor from
    Wang L; Li Z; Lu M; Wang Y
    Front Plant Sci; 2017; 8():635. PubMed ID: 28491072
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The NAC Protein from
    He Z; Li Z; Lu H; Huo L; Wang Z; Wang Y; Ji X
    Plants (Basel); 2019 Jul; 8(7):. PubMed ID: 31336966
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Overexpression of a heat shock protein (ThHSP18.3) from Tamarix hispida confers stress tolerance to yeast.
    Gao C; Jiang B; Wang Y; Liu G; Yang C
    Mol Biol Rep; 2012 Apr; 39(4):4889-97. PubMed ID: 22109899
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.