BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 31744364)

  • 1. Toxicity prediction of small drug molecules of androgen receptor using multilevel ensemble model.
    Gupta VK; Rana PS
    J Bioinform Comput Biol; 2019 Oct; 17(5):1950033. PubMed ID: 31744364
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Activity assessment of small drug molecules in estrogen receptor using multilevel prediction model.
    Gupta VK; Rana PS
    IET Syst Biol; 2019 Jun; 13(3):147-158. PubMed ID: 31170694
    [TBL] [Abstract][Full Text] [Related]  

  • 3. General Approach to Estimate Error Bars for Quantitative Structure-Activity Relationship Predictions of Molecular Activity.
    Liu R; Glover KP; Feasel MG; Wallqvist A
    J Chem Inf Model; 2018 Aug; 58(8):1561-1575. PubMed ID: 29949366
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving virtual screening predictive accuracy of Human kallikrein 5 inhibitors using machine learning models.
    Fang X; Bagui S; Bagui S
    Comput Biol Chem; 2017 Aug; 69():110-119. PubMed ID: 28601761
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting the reproductive toxicity of chemicals using ensemble learning methods and molecular fingerprints.
    Feng H; Zhang L; Li S; Liu L; Yang T; Yang P; Zhao J; Arkin IT; Liu H
    Toxicol Lett; 2021 Apr; 340():4-14. PubMed ID: 33421549
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A big data approach with artificial neural network and molecular similarity for chemical data mining and endocrine disruption prediction.
    Paulose R; Jegatheesan K; Balakrishnan GS
    Indian J Pharmacol; 2018; 50(4):169-176. PubMed ID: 30505052
    [TBL] [Abstract][Full Text] [Related]  

  • 7. VirtualToxLab: Exploring the Toxic Potential of Rejuvenating Substances Found in Traditional Medicines.
    Smieško M; Vedani A
    Methods Mol Biol; 2016; 1425():121-37. PubMed ID: 27311465
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comprehensive ensemble in QSAR prediction for drug discovery.
    Kwon S; Bae H; Jo J; Yoon S
    BMC Bioinformatics; 2019 Oct; 20(1):521. PubMed ID: 31655545
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In silico prediction of drug-induced rhabdomyolysis with machine-learning models and structural alerts.
    Cui X; Liu J; Zhang J; Wu Q; Li X
    J Appl Toxicol; 2019 Aug; 39(8):1224-1232. PubMed ID: 31006880
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Critical assessment of QSAR models of environmental toxicity against Tetrahymena pyriformis: focusing on applicability domain and overfitting by variable selection.
    Tetko IV; Sushko I; Pandey AK; Zhu H; Tropsha A; Papa E; Oberg T; Todeschini R; Fourches D; Varnek A
    J Chem Inf Model; 2008 Sep; 48(9):1733-46. PubMed ID: 18729318
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A review on machine learning methods for in silico toxicity prediction.
    Idakwo G; Luttrell J; Chen M; Hong H; Zhou Z; Gong P; Zhang C
    J Environ Sci Health C Environ Carcinog Ecotoxicol Rev; 2018; 36(4):169-191. PubMed ID: 30628866
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In Silico Study of In Vitro GPCR Assays by QSAR Modeling.
    Mansouri K; Judson RS
    Methods Mol Biol; 2016; 1425():361-81. PubMed ID: 27311474
    [TBL] [Abstract][Full Text] [Related]  

  • 13. QSAR modelling study of the bioconcentration factor and toxicity of organic compounds to aquatic organisms using machine learning and ensemble methods.
    Ai H; Wu X; Zhang L; Qi M; Zhao Y; Zhao Q; Zhao J; Liu H
    Ecotoxicol Environ Saf; 2019 Sep; 179():71-78. PubMed ID: 31026752
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Discriminant models on mitochondrial toxicity improved by consensus modeling and resolving imbalance in training.
    Tang W; Chen J; Hong H
    Chemosphere; 2020 Aug; 253():126768. PubMed ID: 32464767
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Target-specific toxicity knowledgebase (TsTKb): a novel toolkit for in silico predictive toxicology.
    Li Y; Idakwo G; Thangapandian S; Chen M; Hong H; Zhang C; Gong P
    J Environ Sci Health C Environ Carcinog Ecotoxicol Rev; 2018; 36(4):219-236. PubMed ID: 30426823
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of the aquatic toxicity of aromatic compounds to tetrahymena pyriformis through support vector regression.
    Su Q; Lu W; Du D; Chen F; Niu B; Chou KC
    Oncotarget; 2017 Jul; 8(30):49359-49369. PubMed ID: 28467816
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CPEM: Accurate cancer type classification based on somatic alterations using an ensemble of a random forest and a deep neural network.
    Lee K; Jeong HO; Lee S; Jeong WK
    Sci Rep; 2019 Nov; 9(1):16927. PubMed ID: 31729414
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ensemble Learning, Deep Learning-Based and Molecular Descriptor-Based Quantitative Structure-Activity Relationships.
    Matsuzaka Y; Uesawa Y
    Molecules; 2023 Mar; 28(5):. PubMed ID: 36903654
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Correlation-Based Ensemble Feature Selection Using Bioinspired Algorithms and Classification Using Backpropagation Neural Network.
    Elgin Christo VR; Khanna Nehemiah H; Minu B; Kannan A
    Comput Math Methods Med; 2019; 2019():7398307. PubMed ID: 31662787
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ToxiM: A Toxicity Prediction Tool for Small Molecules Developed Using Machine Learning and Chemoinformatics Approaches.
    Sharma AK; Srivastava GN; Roy A; Sharma VK
    Front Pharmacol; 2017; 8():880. PubMed ID: 29249969
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.