These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 31744409)

  • 41. Early Cretaceous mealybug herbivory on a laurel highlights the deep-time history of angiosperm-scale insect associations.
    Xiao L; Labandeira CC; Ben-Dov Y; Maccracken SA; Shih C; Dilcher DL; Ren D
    New Phytol; 2021 Nov; 232(3):1414-1423. PubMed ID: 34379798
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Insect herbivory on Catula gettyi gen. et sp. nov. (Lauraceae) from the Kaiparowits Formation (Late Cretaceous, Utah, USA).
    Maccracken SA; Miller IM; Johnson KR; Sertich JM; Labandeira CC
    PLoS One; 2022; 17(1):e0261397. PubMed ID: 35061696
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Revisiting the origin and diversification of vascular plants through a comprehensive Bayesian analysis of the fossil record.
    Silvestro D; Cascales-Miñana B; Bacon CD; Antonelli A
    New Phytol; 2015 Jul; 207(2):425-436. PubMed ID: 25619401
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A new mite-plant association: mites living amidst the adhesive traps of a carnivorous plant.
    Antor RJ; García MB
    Oecologia; 1995 Jan; 101(1):51-54. PubMed ID: 28306975
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Schmeissneria: a missing link to angiosperms?
    Wang X; Duan S; Geng B; Cui J; Yang Y
    BMC Evol Biol; 2007 Feb; 7():14. PubMed ID: 17284326
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Structural evidence in Plectroniella armata (Rubiaceae) for possible material exchange between domatia and mites.
    Tilney PM; van Wyk AE; van der Merwe CF
    PLoS One; 2012; 7(7):e39984. PubMed ID: 22792206
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Five major shifts of diversification through the long evolutionary history of Magnoliidae (angiosperms).
    Massoni J; Couvreur TL; Sauquet H
    BMC Evol Biol; 2015 Mar; 15():49. PubMed ID: 25887386
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Rise to dominance of angiosperm pioneers in European Cretaceous environments.
    Coiffard C; Gomez B; Daviero-Gomez V; Dilcher DL
    Proc Natl Acad Sci U S A; 2012 Dec; 109(51):20955-9. PubMed ID: 23213256
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Mutualism and biodiversity.
    Bascompte J
    Curr Biol; 2019 Jun; 29(11):R467-R470. PubMed ID: 31163160
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Did flowering plants exist in the Jurassic period?
    Taylor DW; Li H
    Elife; 2018 Dec; 7():. PubMed ID: 30558713
    [TBL] [Abstract][Full Text] [Related]  

  • 51. How deep is the conflict between molecular and fossil evidence on the age of angiosperms?
    Coiro M; Doyle JA; Hilton J
    New Phytol; 2019 Jul; 223(1):83-99. PubMed ID: 30681148
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The oldest fossil evidence of animal parasitism by fungi supports a Cretaceous diversification of fungal-arthropod symbioses.
    Sung GH; Poinar GO; Spatafora JW
    Mol Phylogenet Evol; 2008 Nov; 49(2):495-502. PubMed ID: 18817884
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The delayed and geographically heterogeneous diversification of flowering plant families.
    Ramírez-Barahona S; Sauquet H; Magallón S
    Nat Ecol Evol; 2020 Sep; 4(9):1232-1238. PubMed ID: 32632260
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Arthropods in amber from the Triassic Period.
    Schmidt AR; Jancke S; Lindquist EE; Ragazzi E; Roghi G; Nascimbene PC; Schmidt K; Wappler T; Grimaldi DA
    Proc Natl Acad Sci U S A; 2012 Sep; 109(37):14796-801. PubMed ID: 22927387
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Angiosperm leaf vein evolution was physiologically and environmentally transformative.
    Boyce CK; Brodribb TJ; Feild TS; Zwieniecki MA
    Proc Biol Sci; 2009 May; 276(1663):1771-6. PubMed ID: 19324775
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Tectonic-driven climate change and the diversification of angiosperms.
    Chaboureau AC; Sepulchre P; Donnadieu Y; Franc A
    Proc Natl Acad Sci U S A; 2014 Sep; 111(39):14066-70. PubMed ID: 25225405
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Diversity and development of domatia: Symbiotic plant structures to host mutualistic ants or mites.
    Chomicki G; Walker-Hale N; Etchells JP; Ritter EJ; Weber MG
    Curr Opin Plant Biol; 2024 Sep; 82():102647. PubMed ID: 39353261
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Identification of two lineages of host-associated eriophyoid mites predisposed to different levels of host diversification.
    Li HS; Hoffmann AA; Guo JF; Zuo Y; Xue XF; Pang H; Hong XY
    Mol Phylogenet Evol; 2016 Dec; 105():235-240. PubMed ID: 27637989
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Persistent biotic interactions of a Gondwanan conifer from Cretaceous Patagonia to modern Malesia.
    Donovan MP; Wilf P; Iglesias A; Cúneo NR; Labandeira CC
    Commun Biol; 2020 Nov; 3(1):708. PubMed ID: 33239710
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Associations between mites and leaf dornatia.
    O'Dowd DJ; Willson MF
    Trends Ecol Evol; 1991 Jun; 6(6):179-82. PubMed ID: 21232451
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.