These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

397 related articles for article (PubMed ID: 31744449)

  • 61. 2016 Russell Ross Memorial Lecture in Vascular Biology: Molecular-Cellular Mechanisms in the Progression of Atherosclerosis.
    Tabas I
    Arterioscler Thromb Vasc Biol; 2017 Feb; 37(2):183-189. PubMed ID: 27979856
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Mitochondrial Dysfunction in Atherosclerosis.
    Peng W; Cai G; Xia Y; Chen J; Wu P; Wang Z; Li G; Wei D
    DNA Cell Biol; 2019 Jul; 38(7):597-606. PubMed ID: 31095428
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Mitochondrial DNA mutations and oxidative damage in skeletal muscle of patients with chronic uremia.
    Lim PS; Ma YS; Cheng YM; Chai H; Lee CF; Chen TL; Wei YH
    J Biomed Sci; 2002; 9(6 Pt 1):549-60. PubMed ID: 12372993
    [TBL] [Abstract][Full Text] [Related]  

  • 64. [The possible role of nitrogen dioxide produced in the field of bifurcation of vessels, in the processes of their damage in hemorrhagic strokes, and the formation of atherosclerotic plaques].
    Reutov VP; Sorokina EG; Shvalev VN; Kosmachevskaia OV; Krushinskiĭ AL; Kuzenkov VS; Svinov MM; Kositsyn NS
    Usp Fiziol Nauk; 2012; 43(4):73-93. PubMed ID: 23227723
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Mitochondrial Dysfunction and DNA Damage in the Context of Pathogenesis of Atherosclerosis.
    Shemiakova T; Ivanova E; Grechko AV; Gerasimova EV; Sobenin IA; Orekhov AN
    Biomedicines; 2020 Jun; 8(6):. PubMed ID: 32570831
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Oxidative stress response elicited by mitochondrial dysfunction: implication in the pathophysiology of aging.
    Wang CH; Wu SB; Wu YT; Wei YH
    Exp Biol Med (Maywood); 2013 May; 238(5):450-60. PubMed ID: 23856898
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Chronic administration of mitochondrion-targeted peptide SS-31 prevents atherosclerotic development in ApoE knockout mice fed Western diet.
    Zhang M; Zhao H; Cai J; Li H; Wu Q; Qiao T; Li K
    PLoS One; 2017; 12(9):e0185688. PubMed ID: 28961281
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Fetal programming of atherosclerosis: possible role of the mitochondria.
    Leduc L; Levy E; Bouity-Voubou M; Delvin E
    Eur J Obstet Gynecol Reprod Biol; 2010 Apr; 149(2):127-30. PubMed ID: 20053495
    [TBL] [Abstract][Full Text] [Related]  

  • 69. [Oxidative stress and atherosclerosis].
    Stark J
    Orv Hetil; 2015 Jul; 156(28):1115-9. PubMed ID: 26149503
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Epigenetic control of atherosclerosis via DNA methylation: A new therapeutic target?
    Gorabi AM; Penson PE; Banach M; Motallebnezhad M; Jamialahmadi T; Sahebkar A
    Life Sci; 2020 Jul; 253():117682. PubMed ID: 32387418
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Sex as a Biological Variable in Atherosclerosis.
    Man JJ; Beckman JA; Jaffe IZ
    Circ Res; 2020 Apr; 126(9):1297-1319. PubMed ID: 32324497
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Mitochondrial dysfunction in inflammatory responses and cellular senescence: pathogenesis and pharmacological targets for chronic lung diseases.
    Yue L; Yao H
    Br J Pharmacol; 2016 Aug; 173(15):2305-18. PubMed ID: 27189175
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Role of PTEN-Induced Protein Kinase 1 as a Mitochondrial Dysfunction Regulator in Cardiovascular Disease Pathogenesis.
    Gwon JG; Lee SM
    Vasc Specialist Int; 2024 Mar; 40():9. PubMed ID: 38486493
    [TBL] [Abstract][Full Text] [Related]  

  • 74. New insights into the role of iron in inflammation and atherosclerosis.
    Cornelissen A; Guo L; Sakamoto A; Virmani R; Finn AV
    EBioMedicine; 2019 Sep; 47():598-606. PubMed ID: 31416722
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Macrophage mitochondrial superoxides as a target for atherosclerotic disease treatment.
    Groh LA; Riksen NP
    Int J Biochem Cell Biol; 2020 Dec; 129():105883. PubMed ID: 33176186
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Dihydromyricetin ameliorates atherosclerosis in LDL receptor deficient mice.
    Liu TT; Zeng Y; Tang K; Chen X; Zhang W; Xu XL
    Atherosclerosis; 2017 Jul; 262():39-50. PubMed ID: 28500865
    [TBL] [Abstract][Full Text] [Related]  

  • 77. The Role of Mitochondria in Cardiovascular Diseases.
    Poznyak AV; Ivanova EA; Sobenin IA; Yet SF; Orekhov AN
    Biology (Basel); 2020 Jun; 9(6):. PubMed ID: 32630516
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Mitochondrial DNA Mutation, Diseases, and Nutrient-Regulated Mitophagy.
    Yang X; Zhang R; Nakahira K; Gu Z
    Annu Rev Nutr; 2019 Aug; 39():201-226. PubMed ID: 31433742
    [TBL] [Abstract][Full Text] [Related]  

  • 79. BNIP3L/NIX and FUNDC1-mediated mitophagy is required for mitochondrial network remodeling during cardiac progenitor cell differentiation.
    Lampert MA; Orogo AM; Najor RH; Hammerling BC; Leon LJ; Wang BJ; Kim T; Sussman MA; Gustafsson ÅB
    Autophagy; 2019 Jul; 15(7):1182-1198. PubMed ID: 30741592
    [TBL] [Abstract][Full Text] [Related]  

  • 80. NecroX-7 reduces necrotic core formation in atherosclerotic plaques of Apoe knockout mice.
    Grootaert MOJ; Schrijvers DM; Van Spaendonk H; Breynaert A; Hermans N; Van Hoof VO; Takahashi N; Vandenabeele P; Kim SH; De Meyer GRY; Martinet W
    Atherosclerosis; 2016 Sep; 252():166-174. PubMed ID: 27425215
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.