These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
207 related articles for article (PubMed ID: 31744698)
21. Synergism of transition metal (Co, Ni, Fe, Mn) nanoparticles and "active support" Fe Baye AF; Appiah-Ntiamoah R; Kim H Sci Total Environ; 2020 Apr; 712():135492. PubMed ID: 31784174 [TBL] [Abstract][Full Text] [Related]
22. Fabrication of Co@SiO Guo X; Zhang M; Zheng J; Xu J; Hayat T; Alharbi NS; Xi B; Xiong S Dalton Trans; 2017 Sep; 46(35):11598-11607. PubMed ID: 28782770 [TBL] [Abstract][Full Text] [Related]
23. Catalytic reduction of 4-nitrophenol over Ni-Pd nanodimers supported on nitrogen-doped reduced graphene oxide. Liu L; Chen R; Liu W; Wu J; Gao D J Hazard Mater; 2016 Dec; 320():96-104. PubMed ID: 27521757 [TBL] [Abstract][Full Text] [Related]
24. Construction of continuous flow catalytic reactor-HPLC system with ultrahigh catalytic activity using 2D nanoflower MOF-derived Cu Li Y; Zheng S; Hou S; Chen T; Bai Y; Zhang M; Zhou D; Yang S; Xu H; Zhang G J Hazard Mater; 2023 Oct; 460():132376. PubMed ID: 37690202 [TBL] [Abstract][Full Text] [Related]
25. Magnetic alginate-carboxymethyl cellulose to immobilize copper nanoparticles as a green and sustainable catalyst for 4-nitrophenol reduction. Helmiyati H; Yunarti RT; Dini FW Heliyon; 2023 Mar; 9(3):e14111. PubMed ID: 36915528 [TBL] [Abstract][Full Text] [Related]
26. Remarkable Enhancement of Catalytic Reduction of Nitrophenol Isomers by Decoration of Ni Nanosheets with Cu Species. Avalos-Ballester V; Acosta B; Smolentseva E ACS Omega; 2024 Sep; 9(36):37981-37994. PubMed ID: 39281961 [TBL] [Abstract][Full Text] [Related]
27. Cu-Doped 1D Hydroxyapatite as a Highly Active Catalyst for the Removal of 4-Nitrophenol and Dyes from Water. El-Aal MA; Ali HM; Ibrahim SM ACS Omega; 2022 Aug; 7(30):26777-26787. PubMed ID: 35936455 [TBL] [Abstract][Full Text] [Related]
28. Integrating photothermal and plasmonic catalysis induced by near-infrared light for efficient reduction of 4-nitrophenol. Li X; Sun B; Chen Q; Lee HK; Shi B; Ren H; Li H; Ma Z; Fu M J Colloid Interface Sci; 2024 Apr; 660():726-734. PubMed ID: 38271808 [TBL] [Abstract][Full Text] [Related]
29. Borohydride-Assisted Surface Activation of Co Ortiz-QuiƱonez JL; Pal U ACS Omega; 2019 Jun; 4(6):10129-10139. PubMed ID: 31460105 [TBL] [Abstract][Full Text] [Related]
30. Ultrafine copper nanoparticles anchored on reduced graphene oxide present excellent catalytic performance toward 4-nitrophenol reduction. Kang X; Teng D; Wu S; Tian Z; Liu J; Li P; Ma Y; Liang C J Colloid Interface Sci; 2020 Apr; 566():265-270. PubMed ID: 32007738 [TBL] [Abstract][Full Text] [Related]
31. Magnetic cobaltic nanoparticle-anchored carbon nanocomposite derived from cobalt-dipicolinic acid coordination polymer: An enhanced catalyst for environmental oxidative and reductive reactions. Wu CH; Lin JT; Lin KA J Colloid Interface Sci; 2018 May; 517():124-133. PubMed ID: 29421672 [TBL] [Abstract][Full Text] [Related]
32. Ultrafast conversion of carcinogenic 4-nitrophenol into 4-aminophenol in the dark catalyzed by surface interaction on BiPO Azzam AB; Djellabi R; Sheta SM; El-Sheikh SM RSC Adv; 2021 May; 11(31):18797-18808. PubMed ID: 35478611 [TBL] [Abstract][Full Text] [Related]
33. A ternary Cu2O-Cu-CuO nanocomposite: a catalyst with intriguing activity. Sasmal AK; Dutta S; Pal T Dalton Trans; 2016 Feb; 45(7):3139-50. PubMed ID: 26776952 [TBL] [Abstract][Full Text] [Related]
34. Pyrolysis of metal-organic framework (CuBTC) decorated filter paper as a low-cost and highly active catalyst for the reduction of 4-nitrophenol. Zhi L; Liu H; Xu Y; Hu D; Yao X; Liu J Dalton Trans; 2018 Nov; 47(43):15458-15464. PubMed ID: 30334052 [TBL] [Abstract][Full Text] [Related]
35. Chitosan nanocomposite fibers supported copper nanoparticles based perceptive sensor and active catalyst for nitrophenol in real water. Khan SB; Ali F; Akhtar K Carbohydr Polym; 2019 Mar; 207():650-662. PubMed ID: 30600050 [TBL] [Abstract][Full Text] [Related]
36. Preparation of nitrogen-doped Cu-biochar and its application into catalytic reduction of p-nitrophenol. Cho DW; Kim S; Tsang YF; Song H Environ Geochem Health; 2019 Aug; 41(4):1729-1737. PubMed ID: 28455819 [TBL] [Abstract][Full Text] [Related]
37. Synthesis of CoFe Zhao Y; Cao B; Lin Z; Su X Environ Pollut; 2019 Nov; 254(Pt A):112961. PubMed ID: 31398635 [TBL] [Abstract][Full Text] [Related]
38. Core-shell Prussian blue analogues@ poly(m-phenylenediamine) as efficient peroxymonosulfate activators for degradation of Rhodamine B with reduced metal leaching. Zeng L; Xiao L; Shi X; Wei M; Cao J; Long Y J Colloid Interface Sci; 2019 Jan; 534():586-594. PubMed ID: 30265986 [TBL] [Abstract][Full Text] [Related]
39. CeO Zhao H; Pang X; Huang Y; Ma C; Bai H; Fan W Inorg Chem; 2022 Dec; 61(49):19806-19816. PubMed ID: 36417551 [TBL] [Abstract][Full Text] [Related]
40. Carboxymethyl Cellulose/Copper Oxide-Titanium Oxide Based Nanocatalyst Beads for the Reduction of Organic and Inorganic Pollutants. Bakhsh EM; Khan SB; Maslamani N; Danish EY; Akhtar K; Asiri AM Polymers (Basel); 2023 Mar; 15(6):. PubMed ID: 36987282 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]