BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 31744869)

  • 21. Accurate detection of chemical modifications in RNA by mutational profiling (MaP) with ShapeMapper 2.
    Busan S; Weeks KM
    RNA; 2018 Feb; 24(2):143-148. PubMed ID: 29114018
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Probing RNA structure with chemical reagents and enzymes.
    Ziehler WA; Engelke DR
    Curr Protoc Nucleic Acid Chem; 2001 May; Chapter 6():Unit 6.1. PubMed ID: 18428862
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Molecular modeling of the three-dimensional architecture of the RNA component of yeast RNase MRP.
    Schmitt ME
    J Mol Biol; 1999 Oct; 292(4):827-36. PubMed ID: 10525408
    [TBL] [Abstract][Full Text] [Related]  

  • 24. In vivo probing of nascent RNA structures reveals principles of cotranscriptional folding.
    Incarnato D; Morandi E; Anselmi F; Simon LM; Basile G; Oliviero S
    Nucleic Acids Res; 2017 Sep; 45(16):9716-9725. PubMed ID: 28934475
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dissecting the secondary structure of the circular RNA of a nuclear viroid in vivo: A "naked" rod-like conformation similar but not identical to that observed in vitro.
    López-Carrasco A; Flores R
    RNA Biol; 2017 Aug; 14(8):1046-1054. PubMed ID: 27574720
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An evolutionarily conserved RNA stem-loop functions as a sensor that directs feedback regulation of RNase E gene expression.
    Diwa A; Bricker AL; Jain C; Belasco JG
    Genes Dev; 2000 May; 14(10):1249-60. PubMed ID: 10817759
    [TBL] [Abstract][Full Text] [Related]  

  • 27. RNA Remodeling by RNA Chaperones Monitored by RNA Structure Probing.
    Friedrich S; Schmidt T; Behrens SE
    Methods Mol Biol; 2020; 2106():179-192. PubMed ID: 31889258
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In vivo cleavage rules and target repertoire of RNase III in Escherichia coli.
    Altuvia Y; Bar A; Reiss N; Karavani E; Argaman L; Margalit H
    Nucleic Acids Res; 2018 Nov; 46(19):10380-10394. PubMed ID: 30113670
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Probing RNA structure in vivo.
    Mitchell D; Assmann SM; Bevilacqua PC
    Curr Opin Struct Biol; 2019 Dec; 59():151-158. PubMed ID: 31521910
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structure and function of the conserved 690 hairpin in Escherichia coli 16 S ribosomal RNA: analysis of the stem nucleotides.
    Morosyuk SV; Lee K; SantaLucia J; Cunningham PR
    J Mol Biol; 2000 Jun; 300(1):113-26. PubMed ID: 10864503
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Probing the structure of the Escherichia coli 10Sa RNA (tmRNA).
    Felden B; Himeno H; Muto A; McCutcheon JP; Atkins JF; Gesteland RF
    RNA; 1997 Jan; 3(1):89-103. PubMed ID: 8990402
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Phylogenetic analysis of the structure of RNase MRP RNA in yeasts.
    Li X; Frank DN; Pace N; Zengel JM; Lindahl L
    RNA; 2002 Jun; 8(6):740-51. PubMed ID: 12088147
    [TBL] [Abstract][Full Text] [Related]  

  • 33. fhlA repression by OxyS RNA: kissing complex formation at two sites results in a stable antisense-target RNA complex.
    Argaman L; Altuvia S
    J Mol Biol; 2000 Jul; 300(5):1101-12. PubMed ID: 10903857
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Single-molecule correlated chemical probing of RNA.
    Homan PJ; Favorov OV; Lavender CA; Kursun O; Ge X; Busan S; Dokholyan NV; Weeks KM
    Proc Natl Acad Sci U S A; 2014 Sep; 111(38):13858-63. PubMed ID: 25205807
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structure modeling of RNA using sparse NMR constraints.
    Williams B; Zhao B; Tandon A; Ding F; Weeks KM; Zhang Q; Dokholyan NV
    Nucleic Acids Res; 2017 Dec; 45(22):12638-12647. PubMed ID: 29165648
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Both RNase E and RNase III control the stability of sodB mRNA upon translational inhibition by the small regulatory RNA RyhB.
    Afonyushkin T; Vecerek B; Moll I; Bläsi U; Kaberdin VR
    Nucleic Acids Res; 2005; 33(5):1678-89. PubMed ID: 15781494
    [TBL] [Abstract][Full Text] [Related]  

  • 37. DMS-MaPseq for genome-wide or targeted RNA structure probing in vivo.
    Zubradt M; Gupta P; Persad S; Lambowitz AM; Weissman JS; Rouskin S
    Nat Methods; 2017 Jan; 14(1):75-82. PubMed ID: 27819661
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Site-Directed Chemical Probing to map transient RNA/protein interactions.
    Duval M; Marenna A; Chevalier C; Marzi S
    Methods; 2017 Mar; 117():48-58. PubMed ID: 28027957
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mapping RNA structure in vitro using nucleobase-specific probes.
    Sachsenmaier N; Handl S; Debeljak F; Waldsich C
    Methods Mol Biol; 2014; 1086():79-94. PubMed ID: 24136599
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Genome-wide probing RNA structure with the modified DMS-MaPseq in Arabidopsis.
    Wang Z; Wang M; Wang T; Zhang Y; Zhang X
    Methods; 2019 Feb; 155():30-40. PubMed ID: 30503825
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.