BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 31744916)

  • 1. The Immune Protein Calprotectin Impacts Clostridioides difficile Metabolism through Zinc Limitation.
    Lopez CA; Beavers WN; Weiss A; Knippel RJ; Zackular JP; Chazin W; Skaar EP
    mBio; 2019 Nov; 10(6):. PubMed ID: 31744916
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ZupT Facilitates Clostridioides difficile Resistance to Host-Mediated Nutritional Immunity.
    Zackular JP; Knippel RJ; Lopez CA; Beavers WN; Maxwell CN; Chazin WJ; Skaar EP
    mSphere; 2020 Mar; 5(2):. PubMed ID: 32161145
    [No Abstract]   [Full Text] [Related]  

  • 3. The Stickland Reaction Precursor
    Reed AD; Fletcher JR; Huang YY; Thanissery R; Rivera AJ; Parsons RJ; Stewart AK; Kountz DJ; Shen A; Balskus EP; Theriot CM
    mSphere; 2022 Apr; 7(2):e0092621. PubMed ID: 35350846
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shifts in the Gut Metabolome and
    Fletcher JR; Erwin S; Lanzas C; Theriot CM
    mSphere; 2018; 3(2):. PubMed ID: 29600278
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dietary zinc alters the microbiota and decreases resistance to Clostridium difficile infection.
    Zackular JP; Moore JL; Jordan AT; Juttukonda LJ; Noto MJ; Nicholson MR; Crews JD; Semler MW; Zhang Y; Ware LB; Washington MK; Chazin WJ; Caprioli RM; Skaar EP
    Nat Med; 2016 Nov; 22(11):1330-1334. PubMed ID: 27668938
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Human Innate Immune Protein Calprotectin Elicits a Multimetal Starvation Response in Pseudomonas aeruginosa.
    Nelson CE; Huang W; Zygiel EM; Nolan EM; Kane MA; Oglesby AG
    Microbiol Spectr; 2021 Oct; 9(2):e0051921. PubMed ID: 34549997
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intestinal Inflammation Reversibly Alters the Microbiota to Drive Susceptibility to Clostridioides difficile Colonization in a Mouse Model of Colitis.
    Barron MR; Sovacool KL; Abernathy-Close L; Vendrov KC; Standke AK; Bergin IL; Schloss PD; Young VB
    mBio; 2022 Aug; 13(4):e0190422. PubMed ID: 35900107
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Clearance of Clostridioides difficile Colonization Is Associated with Antibiotic-Specific Bacterial Changes.
    Lesniak NA; Schubert AM; Sinani H; Schloss PD
    mSphere; 2021 May; 6(3):. PubMed ID: 33952668
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intestinal Inflammation and Altered Gut Microbiota Associated with Inflammatory Bowel Disease Render Mice Susceptible to Clostridioides difficile Colonization and Infection.
    Abernathy-Close L; Barron MR; George JM; Dieterle MG; Vendrov KC; Bergin IL; Young VB
    mBio; 2021 Jun; 12(3):e0273320. PubMed ID: 34126769
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diluted Fecal Community Transplant Restores Clostridioides difficile Colonization Resistance to Antibiotic-Perturbed Murine Communities.
    Lesniak NA; Tomkovich S; Henry A; Taylor A; Colovas J; Bishop L; McBride K; Schloss PD
    mBio; 2022 Aug; 13(4):e0136422. PubMed ID: 35913161
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of zinc and nutritional immunity in Clostridium difficile infection.
    Zackular JP; Skaar EP
    Gut Microbes; 2018; 9(5):469-476. PubMed ID: 29533126
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Group A Streptococcus AdcR Regulon Participates in Bacterial Defense against Host-Mediated Zinc Sequestration and Contributes to Virulence.
    Makthal N; Do H; Wendel BM; Olsen RJ; Helmann JD; Musser JM; Kumaraswami M
    Infect Immun; 2020 Jul; 88(8):. PubMed ID: 32393509
    [TBL] [Abstract][Full Text] [Related]  

  • 13.
    Jenior ML; Leslie JL; Young VB; Schloss PD
    mSphere; 2018 Jun; 3(3):. PubMed ID: 29950381
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pre-colonization with the commensal fungus Candida albicans reduces murine susceptibility to Clostridium difficile infection.
    Markey L; Shaban L; Green ER; Lemon KP; Mecsas J; Kumamoto CA
    Gut Microbes; 2018 Nov; 9(6):497-509. PubMed ID: 29667487
    [TBL] [Abstract][Full Text] [Related]  

  • 15. d-Proline Reductase Underlies Proline-Dependent Growth of Clostridioides difficile.
    Johnstone MA; Self WT
    J Bacteriol; 2022 Aug; 204(8):e0022922. PubMed ID: 35862761
    [TBL] [Abstract][Full Text] [Related]  

  • 16. What's metal got to do with it? Transition metals in Clostridioides difficile infection.
    Gomez SY; Patel J; Lopez CA
    Curr Opin Microbiol; 2022 Feb; 65():116-122. PubMed ID: 34839238
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Strain-Dependent Inhibition of Clostridioides difficile by Commensal
    Reed AD; Nethery MA; Stewart A; Barrangou R; Theriot CM
    J Bacteriol; 2020 May; 202(11):. PubMed ID: 32179626
    [No Abstract]   [Full Text] [Related]  

  • 18. Protection from Lethal Clostridioides difficile Infection via Intraspecies Competition for Cogerminant.
    Leslie JL; Jenior ML; Vendrov KC; Standke AK; Barron MR; O'Brien TJ; Unverdorben L; Thaprawat P; Bergin IL; Schloss PD; Young VB
    mBio; 2021 Mar; 12(2):. PubMed ID: 33785619
    [No Abstract]   [Full Text] [Related]  

  • 19. Food for thought-The link between Clostridioides difficile metabolism and pathogenesis.
    Marshall A; McGrath JW; Graham R; McMullan G
    PLoS Pathog; 2023 Jan; 19(1):e1011034. PubMed ID: 36602960
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Butyrate Differentiates Permissiveness to Clostridioides difficile Infection and Influences Growth of Diverse C. difficile Isolates.
    Pensinger DA; Fisher AT; Dobrila HA; Van Treuren W; Gardner JO; Higginbottom SK; Carter MM; Schumann B; Bertozzi CR; Anikst V; Martin C; Robilotti EV; Chow JM; Buck RH; Tompkins LS; Sonnenburg JL; Hryckowian AJ
    Infect Immun; 2023 Feb; 91(2):e0057022. PubMed ID: 36692308
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.