These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 31745082)

  • 1. A Bayesian machine learning approach for drug target identification using diverse data types.
    Madhukar NS; Khade PK; Huang L; Gayvert K; Galletti G; Stogniew M; Allen JE; Giannakakou P; Elemento O
    Nat Commun; 2019 Nov; 10(1):5221. PubMed ID: 31745082
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Linking drug target and pathway activation for effective therapy using multi-task learning.
    Yang M; Simm J; Lam CC; Zakeri P; van Westen GJP; Moreau Y; Saez-Rodriguez J
    Sci Rep; 2018 May; 8(1):8322. PubMed ID: 29844324
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of Dopamine Receptors in the Anticancer Activity of ONC201.
    Kline CLB; Ralff MD; Lulla AR; Wagner JM; Abbosh PH; Dicker DT; Allen JE; El-Deiry WS
    Neoplasia; 2018 Jan; 20(1):80-91. PubMed ID: 29216597
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Machine learning prediction of oncology drug targets based on protein and network properties.
    Dezső Z; Ceccarelli M
    BMC Bioinformatics; 2020 Mar; 21(1):104. PubMed ID: 32171238
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In Silico Oncology Drug Repositioning and Polypharmacology.
    Cheng F
    Methods Mol Biol; 2019; 1878():243-261. PubMed ID: 30378081
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Machine and deep learning approaches for cancer drug repurposing.
    Issa NT; Stathias V; Schürer S; Dakshanamurthy S
    Semin Cancer Biol; 2021 Jan; 68():132-142. PubMed ID: 31904426
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Omics Data Integration and Analysis for Systems Pharmacology.
    Lim H; Xie L
    Methods Mol Biol; 2019; 1939():199-214. PubMed ID: 30848463
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational Drug Repositioning: A Lateral Approach to Traditional Drug Discovery?
    Sahu NU; Kharkar PS
    Curr Top Med Chem; 2016; 16(19):2069-77. PubMed ID: 26881717
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rethinking Drug Repositioning and Development with Artificial Intelligence, Machine Learning, and Omics.
    Koromina M; Pandi MT; Patrinos GP
    OMICS; 2019 Nov; 23(11):539-548. PubMed ID: 31651216
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exploiting machine learning for end-to-end drug discovery and development.
    Ekins S; Puhl AC; Zorn KM; Lane TR; Russo DP; Klein JJ; Hickey AJ; Clark AM
    Nat Mater; 2019 May; 18(5):435-441. PubMed ID: 31000803
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational Prediction of Drug-Target Interactions via Ensemble Learning.
    Ezzat A; Wu M; Li X; Kwoh CK
    Methods Mol Biol; 2019; 1903():239-254. PubMed ID: 30547446
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Toward better drug repositioning: prioritizing and integrating existing methods into efficient pipelines.
    Jin G; Wong ST
    Drug Discov Today; 2014 May; 19(5):637-44. PubMed ID: 24239728
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A machine learning-based chemoproteomic approach to identify drug targets and binding sites in complex proteomes.
    Piazza I; Beaton N; Bruderer R; Knobloch T; Barbisan C; Chandat L; Sudau A; Siepe I; Rinner O; de Souza N; Picotti P; Reiter L
    Nat Commun; 2020 Aug; 11(1):4200. PubMed ID: 32826910
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In Silico Drug-Target Profiling.
    Trosset JY; Cavé C
    Methods Mol Biol; 2019; 1953():89-103. PubMed ID: 30912017
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Drug repurposing: Iron in the fire for older drugs.
    Sonaye HV; Sheikh RY; Doifode CA
    Biomed Pharmacother; 2021 Sep; 141():111638. PubMed ID: 34153846
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PTML Model for Selection of Nanoparticles, Anticancer Drugs, and Vitamins in the Design of Drug-Vitamin Nanoparticle Release Systems for Cancer Cotherapy.
    Santana R; Zuluaga R; Gañán P; Arrasate S; Onieva E; Montemore MM; González-Díaz H
    Mol Pharm; 2020 Jul; 17(7):2612-2627. PubMed ID: 32459098
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Advances and Challenges in Computational Target Prediction.
    Sydow D; Burggraaff L; Szengel A; van Vlijmen HWT; IJzerman AP; van Westen GJP; Volkamer A
    J Chem Inf Model; 2019 May; 59(5):1728-1742. PubMed ID: 30817146
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Error Tolerance of Machine Learning Algorithms across Contemporary Biological Targets.
    Kaiser TM; Burger PB
    Molecules; 2019 Jun; 24(11):. PubMed ID: 31167452
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrating Biological Networks for Drug Target Prediction and Prioritization.
    Ji X; Freudenberg JM; Agarwal P
    Methods Mol Biol; 2019; 1903():203-218. PubMed ID: 30547444
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Targeting HIV/HCV Coinfection Using a Machine Learning-Based Multiple Quantitative Structure-Activity Relationships (Multiple QSAR) Method.
    Wei Y; Li W; Du T; Hong Z; Lin J
    Int J Mol Sci; 2019 Jul; 20(14):. PubMed ID: 31336592
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.