These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 31745137)

  • 21. A heteromeric cis-prenyltransferase is responsible for the biosynthesis of glycosyl carrier lipids in Methanosarcina mazei.
    Emi KI; Sompiyachoke K; Okada M; Hemmi H
    Biochem Biophys Res Commun; 2019 Dec; 520(2):291-296. PubMed ID: 31594637
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Genetic analysis of the role of the ABC transporter Ota and Otb in glycine betaine transport in Methanosarcina mazei Gö1.
    Saum R; Mingote A; Santos H; Müller V
    Arch Microbiol; 2009 Apr; 191(4):291-301. PubMed ID: 19096827
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Polyphosphate Kinase 2 (PPK2) Enzymes: Structure, Function, and Roles in Bacterial Physiology and Virulence.
    Neville N; Roberge N; Jia Z
    Int J Mol Sci; 2022 Jan; 23(2):. PubMed ID: 35054854
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Deletion of the archaeal histone in Methanosarcina mazei Gö1 results in reduced growth and genomic transcription.
    Weidenbach K; Glöer J; Ehlers C; Sandman K; Reeve JN; Schmitz RA
    Mol Microbiol; 2008 Feb; 67(3):662-71. PubMed ID: 18086209
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Polyphosphate kinase of Lysinibacillus sphaericus and its effects on accumulation of polyphosphate and bacterial growth.
    Shi T; Ge Y; Zhao N; Hu X; Yuan Z
    Microbiol Res; 2015 Mar; 172():41-7. PubMed ID: 25541179
    [TBL] [Abstract][Full Text] [Related]  

  • 26. MreA functions in the global regulation of methanogenic pathways in Methanosarcina acetivorans.
    Reichlen MJ; Vepachedu VR; Murakami KS; Ferry JG
    mBio; 2012; 3(4):e00189-12. PubMed ID: 22851658
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Functional Genetic Diversity and Plant Growth Promoting Potential of Polyphosphate Accumulating Bacteria in Soil.
    Srivastava S; Anand V; Kaur J; Ranjan M; Bist V; Asif MH; Srivastava S
    Microbiol Spectr; 2022 Feb; 10(1):e0034521. PubMed ID: 35196785
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Inorganic polyphosphates in extremophiles and their possible functions.
    Orell A; Navarro CA; Rivero M; Aguilar JS; Jerez CA
    Extremophiles; 2012 Jul; 16(4):573-83. PubMed ID: 22585316
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Reconstruction of the "Archaeal" Mevalonate Pathway from the Methanogenic Archaeon Methanosarcina mazei in Escherichia coli Cells.
    Yoshida R; Yoshimura T; Hemmi H
    Appl Environ Microbiol; 2020 Mar; 86(6):. PubMed ID: 31924615
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Small protein mediates inhibition of ammonium transport in
    Habenicht T; Weidenbach K; Velazquez-Campoy A; Buey RM; Balsera M; Schmitz RA
    Microbiol Spectr; 2023 Dec; 11(6):e0281123. PubMed ID: 37909787
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Inorganic polyphosphate in mammals: where's Wally?
    Desfougères Y; Saiardi A; Azevedo C
    Biochem Soc Trans; 2020 Feb; 48(1):95-101. PubMed ID: 32049314
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Differential regulation of Ota and Otb, two primary glycine betaine transporters in the methanogenic archaeon methanosarcina mazei Gö1.
    Spanheimer R; Hoffmann M; Kögl S; Schmidt S; Pflüger K; Müller V
    J Mol Microbiol Biotechnol; 2008; 15(4):255-63. PubMed ID: 17878709
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Formation of polyphosphate by polyphosphate kinases and its relationship to poly(3-hydroxybutyrate) accumulation in Ralstonia eutropha strain H16.
    Tumlirsch T; Sznajder A; Jendrossek D
    Appl Environ Microbiol; 2015 Dec; 81(24):8277-93. PubMed ID: 26407880
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Electron transport in the pathway of acetate conversion to methane in the marine archaeon Methanosarcina acetivorans.
    Li Q; Li L; Rejtar T; Lessner DJ; Karger BL; Ferry JG
    J Bacteriol; 2006 Jan; 188(2):702-10. PubMed ID: 16385060
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Polyphosphate-dependent synthesis of ATP and ADP by the family-2 polyphosphate kinases in bacteria.
    Nocek B; Kochinyan S; Proudfoot M; Brown G; Evdokimova E; Osipiuk J; Edwards AM; Savchenko A; Joachimiak A; Yakunin AF
    Proc Natl Acad Sci U S A; 2008 Nov; 105(46):17730-5. PubMed ID: 19001261
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Synthesis and degradation of polyphosphate in Myxococcus xanthus.
    Harita D; Nishida K; Kimura Y
    FEMS Microbiol Lett; 2023 Jan; 370():. PubMed ID: 36731866
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A nonradioactive method for the assay of polyphosphate kinase activity and its application in the study of polyphosphate metabolism in Burkholderia cepacia.
    Mullan A; Quinn JP; McGrath JW
    Anal Biochem; 2002 Sep; 308(2):294-9. PubMed ID: 12419342
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Functional organization of a single nif cluster in the mesophilic archaeon Methanosarcina mazei strain Gö1.
    Ehlers C; Veit K; Gottschalk G; Schmitz RA
    Archaea; 2002 Sep; 1(2):143-50. PubMed ID: 15803652
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Functional similarities and differences of an archaeal Hsp70(DnaK) stress protein compared with its homologue from the bacterium Escherichia coli.
    Zmijewski MA; Macario AJ; Lipińska B
    J Mol Biol; 2004 Feb; 336(2):539-49. PubMed ID: 14757064
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Metabolic Consequences of Polyphosphate Synthesis and Imminent Phosphate Limitation.
    Kim GD; Qiu D; Jessen HJ; Mayer A
    mBio; 2023 Jun; 14(3):e0010223. PubMed ID: 37074217
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.