These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 31745150)

  • 1. The origin of the exceptionally low activation energy of oxygen vacancy in tantalum pentoxide based resistive memory.
    Hur JH
    Sci Rep; 2019 Nov; 9(1):17019. PubMed ID: 31745150
    [TBL] [Abstract][Full Text] [Related]  

  • 2. First principles study of oxygen vacancy activation energy barrier in zirconia-based resistive memory.
    Hur JH
    Sci Rep; 2020 Mar; 10(1):5405. PubMed ID: 32214143
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using Dopants to Tune Oxygen Vacancy Formation in Transition Metal Oxide Resistive Memory.
    Jiang H; Stewart DA
    ACS Appl Mater Interfaces; 2017 May; 9(19):16296-16304. PubMed ID: 28436217
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multi-Nonvolatile State Resistive Switching Arising from Ferroelectricity and Oxygen Vacancy Migration.
    Lü W; Li C; Zheng L; Xiao J; Lin W; Li Q; Wang XR; Huang Z; Zeng S; Han K; Zhou W; Zeng K; Chen J; Ariando ; Cao W; Venkatesan T
    Adv Mater; 2017 Jun; 29(24):. PubMed ID: 28439926
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystal and Electronic Structure of Oxygen Vacancy Stabilized Rhombohedral Hafnium Oxide.
    Kaiser N; Song YJ; Vogel T; Piros E; Kim T; Schreyer P; Petzold S; Valentí R; Alff L
    ACS Appl Electron Mater; 2023 Feb; 5(2):754-763. PubMed ID: 36873259
    [TBL] [Abstract][Full Text] [Related]  

  • 6. First-principles simulation of neutral and charged oxygen vacancies in m-ZrO
    Chaurasiya R; Lin PE; Lyu CH; Chen KT; Shih LC; Chen JS
    Nanotechnology; 2022 Jun; 33(34):. PubMed ID: 35584609
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In situ control of oxygen vacancies in TiO₂ by atomic layer deposition for resistive switching devices.
    Park SJ; Lee JP; Jang JS; Rhu H; Yu H; You BY; Kim CS; Kim KJ; Cho YJ; Baik S; Lee W
    Nanotechnology; 2013 Jul; 24(29):295202. PubMed ID: 23799660
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tuning resistive switching characteristics of tantalum oxide memristors through Si doping.
    Kim S; Choi S; Lee J; Lu WD
    ACS Nano; 2014 Oct; 8(10):10262-9. PubMed ID: 25255038
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A study on mechanism of resistance distribution characteristics of oxide-based resistive memory.
    Hur JH; Kim DK
    Sci Rep; 2019 Jan; 9(1):302. PubMed ID: 30670710
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modelling of oxygen vacancy aggregates in monoclinic HfO2: can they contribute to conductive filament formation?
    Bradley SR; Bersuker G; Shluger AL
    J Phys Condens Matter; 2015 Oct; 27(41):415401. PubMed ID: 26414778
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dislocations in SrTiO3: easy to reduce but not so fast for oxygen transport.
    Marrocchelli D; Sun L; Yildiz B
    J Am Chem Soc; 2015 Apr; 137(14):4735-48. PubMed ID: 25751017
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct observation of oxygen vacancy-driven structural and resistive phase transitions in La
    Yao L; Inkinen S; van Dijken S
    Nat Commun; 2017 Feb; 8():14544. PubMed ID: 28230081
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Resistive switching mechanisms in random access memory devices incorporating transition metal oxides: TiO2, NiO and Pr0.7Ca0.3MnO3.
    Magyari-Köpe B; Tendulkar M; Park SG; Lee HD; Nishi Y
    Nanotechnology; 2011 Jun; 22(25):254029. PubMed ID: 21572196
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Charge Transition of Oxygen Vacancies during Resistive Switching in Oxide-Based RRAM.
    Lee J; Schell W; Zhu X; Kioupakis E; Lu WD
    ACS Appl Mater Interfaces; 2019 Mar; 11(12):11579-11586. PubMed ID: 30816044
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A nondestructive approach to study resistive switching mechanism in metal oxide based on defect photoluminescence mapping.
    Wang X; Gao B; Wu H; Li X; Hong D; Chen Y; Qian H
    Nanoscale; 2017 Sep; 9(36):13449-13456. PubMed ID: 28657082
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Voltage-polarity dependent multi-mode resistive switching on sputtered MgO nanostructures.
    Dias C; Guerra LM; Bordalo BD; Lv H; Ferraria AM; Botelho do Rego AM; Cardoso S; Freitas PP; Ventura J
    Phys Chem Chem Phys; 2017 May; 19(17):10898-10904. PubMed ID: 28401238
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Complementary Resistive Switching and Synaptic-Like Memory Behavior in an Epitaxial SrFeO
    Nallagatla VR; Kim J; Lee K; Chae SC; Hwang CS; Jung CU
    ACS Appl Mater Interfaces; 2020 Sep; 12(37):41740-41748. PubMed ID: 32799524
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design of Oxygen Vacancy Configuration for Memristive Systems.
    Schmitt R; Spring J; Korobko R; Rupp JLM
    ACS Nano; 2017 Sep; 11(9):8881-8891. PubMed ID: 28850213
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deterministic Role of Concentration Surplus of Cation Vacancy over Anion Vacancy in Bipolar Memristive NiO.
    Sun Z; Zhao Y; He M; Gu L; Ma C; Jin K; Zhao D; Luo N; Zhang Q; Wang N; Duan W; Nan CW
    ACS Appl Mater Interfaces; 2016 May; 8(18):11583-91. PubMed ID: 27096884
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of oxygen exchange reaction at the ohmic interface in Ta
    Kim W; Menzel S; Wouters DJ; Guo Y; Robertson J; Roesgen B; Waser R; Rana V
    Nanoscale; 2016 Oct; 8(41):17774-17781. PubMed ID: 27523172
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.