BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 31745168)

  • 1. CgSTE11 mediates cross tolerance to multiple environmental stressors in Candida glabrata.
    Huang M; Khan J; Kaur M; Vanega JDT; Patiño OAA; Ramasubramanian AK; Kao KC
    Sci Rep; 2019 Nov; 9(1):17036. PubMed ID: 31745168
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The high-osmolarity glycerol response pathway in the human fungal pathogen Candida glabrata strain ATCC 2001 lacks a signaling branch that operates in baker's yeast.
    Gregori C; Schüller C; Roetzer A; Schwarzmüller T; Ammerer G; Kuchler K
    Eukaryot Cell; 2007 Sep; 6(9):1635-45. PubMed ID: 17616630
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Candida glabrata Ste11 is involved in adaptation to hypertonic stress, maintenance of wild-type levels of filamentation and plays a role in virulence.
    Calcagno AM; Bignell E; Rogers TR; Jones MD; Mühlschlegel FA; Haynes K
    Med Mycol; 2005 Jun; 43(4):355-64. PubMed ID: 16110782
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identifying novel genetic determinants for oxidative stress tolerance in Candida glabrata via adaptive laboratory evolution.
    Huang M; Kao KC
    Yeast; 2018 Nov; 35(11):605-618. PubMed ID: 30141215
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tec1 and Ste12 transcription factors play a role in adaptation to low pH stress and biofilm formation in the human opportunistic fungal pathogen Candida glabrata.
    Purohit D; Gajjar D
    Int Microbiol; 2022 Nov; 25(4):789-802. PubMed ID: 35829973
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deubiquitination module is critical for oxidative stress response and biofilm formation in Candida glabrata.
    Huang YH; Lee YH; Lin CJ; Hsu LH; Chen YL
    Med Mycol; 2023 Oct; 61(10):. PubMed ID: 37844959
    [TBL] [Abstract][Full Text] [Related]  

  • 7. From Saccharomyces cerevisiae to Candida glabratain a few easy steps: important adaptations for an opportunistic pathogen.
    Roetzer A; Gabaldón T; Schüller C
    FEMS Microbiol Lett; 2011 Jan; 314(1):1-9. PubMed ID: 20846362
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lipid Signaling via Pkh1/2 Regulates Fungal CO2 Sensing through the Kinase Sch9.
    Pohlers S; Martin R; Krüger T; Hellwig D; Hänel F; Kniemeyer O; Saluz HP; Van Dijck P; Ernst JF; Brakhage A; Mühlschlegel FA; Kurzai O
    mBio; 2017 Jan; 8(1):. PubMed ID: 28143980
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The CgHaa1-Regulon Mediates Response and Tolerance to Acetic Acid Stress in the Human Pathogen Candida glabrata.
    Bernardo RT; Cunha DV; Wang C; Pereira L; Silva S; Salazar SB; Schröder MS; Okamoto M; Takahashi-Nakaguchi A; Chibana H; Aoyama T; Sá-Correia I; Azeredo J; Butler G; Mira NP
    G3 (Bethesda); 2017 Jan; 7(1):1-18. PubMed ID: 27815348
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genomes shed light on the secret life of Candida glabrata: not so asexual, not so commensal.
    Gabaldón T; Fairhead C
    Curr Genet; 2019 Feb; 65(1):93-98. PubMed ID: 30027485
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Candida glabrata: a deadly companion?
    Bolotin-Fukuhara M; Fairhead C
    Yeast; 2014 Aug; 31(8):279-88. PubMed ID: 24861573
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Partial Decay of Thiamine Signal Transduction Pathway Alters Growth Properties of Candida glabrata.
    Iosue CL; Attanasio N; Shaik NF; Neal EM; Leone SG; Cali BJ; Peel MT; Grannas AM; Wykoff DD
    PLoS One; 2016; 11(3):e0152042. PubMed ID: 27015653
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inner kinetochore of the pathogenic yeast Candida glabrata.
    Stoyan T; Carbon J
    Eukaryot Cell; 2004 Oct; 3(5):1154-63. PubMed ID: 15470243
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome adaptation to chemical stress: clues from comparative transcriptomics in Saccharomyces cerevisiae and Candida glabrata.
    Lelandais G; Tanty V; Geneix C; Etchebest C; Jacq C; Devaux F
    Genome Biol; 2008; 9(11):R164. PubMed ID: 19025642
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pdr1 regulates multidrug resistance in Candida glabrata: gene disruption and genome-wide expression studies.
    Vermitsky JP; Earhart KD; Smith WL; Homayouni R; Edlind TD; Rogers PD
    Mol Microbiol; 2006 Aug; 61(3):704-22. PubMed ID: 16803598
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxidative stress response to menadione and cumene hydroperoxide in the opportunistic fungal pathogen Candida glabrata.
    Cuéllar-Cruz M; Castaño I; Arroyo-Helguera O; De Las Peñas A
    Mem Inst Oswaldo Cruz; 2009 Jul; 104(4):649-54. PubMed ID: 19722092
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Novel Hybrid Iron Regulation Network Combines Features from Pathogenic and Nonpathogenic Yeasts.
    Gerwien F; Safyan A; Wisgott S; Hille F; Kaemmer P; Linde J; Brunke S; Kasper L; Hube B
    mBio; 2016 Oct; 7(5):. PubMed ID: 27795405
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The regulation of iron homeostasis in the fungal human pathogen
    Devaux F; Thiébaut A
    Microbiology (Reading); 2019 Oct; 165(10):1041-1060. PubMed ID: 31050635
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Candida glabrata Rpn4-like Protein Complements the RPN4 Deletion in Saccharomyces cerevisiae].
    Karpov DS; Grineva EN; Kiseleva SV; Chelarskaya ES; Spasskaya DS; Karpov VL
    Mol Biol (Mosk); 2019; 53(2):274-281. PubMed ID: 31099777
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The inositol regulon controls viability in Candida glabrata.
    Bethea EK; Carver BJ; Montedonico AE; Reynolds TB
    Microbiology (Reading); 2010 Feb; 156(Pt 2):452-462. PubMed ID: 19875437
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.