These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 31745233)

  • 1. Observation of scalable sub-Poissonian-field lasing in a microlaser.
    Ann BM; Song Y; Kim J; Yang D; An K
    Sci Rep; 2019 Nov; 9(1):17110. PubMed ID: 31745233
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental realization of a one-atom laser in the regime of strong coupling.
    McKeever J; Boca A; Boozer AD; Buck JR; Kimble HJ
    Nature; 2003 Sep; 425(6955):268-71. PubMed ID: 13679909
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Observation of sub-poisson photon statistics in the cavity-QED microlaser.
    Choi W; Lee JH; An K; Fang-Yen C; Dasari RR; Feld MS
    Phys Rev Lett; 2006 Mar; 96(9):093603. PubMed ID: 16606264
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A photon turnstile dynamically regulated by one atom.
    Dayan B; Parkins AS; Aoki T; Ostby EP; Vahala KJ; Kimble HJ
    Science; 2008 Feb; 319(5866):1062-5. PubMed ID: 18292335
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lasing by driven atoms-cavity system in collective strong coupling regime.
    Sawant R; Rangwala SA
    Sci Rep; 2017 Sep; 7(1):11432. PubMed ID: 28900221
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photon blockade in an optical cavity with one trapped atom.
    Birnbaum KM; Boca A; Miller R; Boozer AD; Northup TE; Kimble HJ
    Nature; 2005 Jul; 436(7047):87-90. PubMed ID: 16001065
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Observation of squeezed light from one atom excited with two photons.
    Ourjoumtsev A; Kubanek A; Koch M; Sames C; Pinkse PW; Rempe G; Murr K
    Nature; 2011 Jun; 474(7353):623-6. PubMed ID: 21720367
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protocol for Precise Field Sensing in the Optical Domain with Cold Atoms in a Cavity.
    Lewis-Swan RJ; Barberena D; Muniz JA; Cline JRK; Young D; Thompson JK; Rey AM
    Phys Rev Lett; 2020 May; 124(19):193602. PubMed ID: 32469538
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparing pure photon number states of the radiation field.
    Varcoe BT; Brattke S; Weidinger M; Walther H
    Nature; 2000 Feb; 403(6771):743-6. PubMed ID: 10693797
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Observation of strong coupling between one atom and a monolithic microresonator.
    Aoki T; Dayan B; Wilcut E; Bowen WP; Parkins AS; Kippenberg TJ; Vahala KJ; Kimble HJ
    Nature; 2006 Oct; 443(7112):671-4. PubMed ID: 17035998
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generation and detection of a sub-Poissonian atom number distribution in a one-dimensional optical lattice.
    Béguin JB; Bookjans EM; Christensen SL; Sørensen HL; Müller JH; Polzik ES; Appel J
    Phys Rev Lett; 2014 Dec; 113(26):263603. PubMed ID: 25615331
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hyperradiance by a stream of phase-correlated atomic dipole pairs traversing a high-Q cavity.
    Han J; Kim J; Oh SH; Son G; Ha J; An K
    Sci Rep; 2021 May; 11(1):11256. PubMed ID: 34045596
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fast cavity-enhanced atom detection with low noise and high fidelity.
    Goldwin J; Trupke M; Kenner J; Ratnapala A; Hinds EA
    Nat Commun; 2011 Aug; 2():418. PubMed ID: 21829180
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strong atom-field coupling for Bose-Einstein condensates in an optical cavity on a chip.
    Colombe Y; Steinmetz T; Dubois G; Linke F; Hunger D; Reichel J
    Nature; 2007 Nov; 450(7167):272-6. PubMed ID: 17994094
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Searching for Dark Matter with a Superconducting Qubit.
    Dixit AV; Chakram S; He K; Agrawal A; Naik RK; Schuster DI; Chou A
    Phys Rev Lett; 2021 Apr; 126(14):141302. PubMed ID: 33891438
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Instability and entanglement of the ground state of the Dicke model.
    Buzek V; Orszag M; Rosko M
    Phys Rev Lett; 2005 Apr; 94(16):163601. PubMed ID: 15904225
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of dissipative forces on the theory of a single-atom microlaser.
    Nayak N
    Opt Lett; 1999 Jan; 24(1):13-5. PubMed ID: 18071392
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Atomic self-trapping induced by single-atom lasing.
    Salzburger T; Ritsch H
    Phys Rev Lett; 2004 Aug; 93(6):063002. PubMed ID: 15323625
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantum jumps of light recording the birth and death of a photon in a cavity.
    Gleyzes S; Kuhr S; Guerlin C; Bernu J; Deléglise S; Busk Hoff U; Brune M; Raimond JM; Haroche S
    Nature; 2007 Mar; 446(7133):297-300. PubMed ID: 17361178
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Climbing the Jaynes-Cummings ladder and observing its nonlinearity in a cavity QED system.
    Fink JM; Göppl M; Baur M; Bianchetti R; Leek PJ; Blais A; Wallraff A
    Nature; 2008 Jul; 454(7202):315-8. PubMed ID: 18633413
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.