These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 31745233)
61. A Mean-Field Treatment of Vacuum Fluctuations in Strong Light-Matter Coupling. Hsieh MH; Krotz A; Tempelaar R J Phys Chem Lett; 2023 Feb; 14(5):1253-1258. PubMed ID: 36719108 [TBL] [Abstract][Full Text] [Related]
62. Fast switching between the ground- and excited-state lasing in a quantum-dot microdisk triggered by sub-ps pulses. Zhukov A; Nadtochiy A; Karaborchev A; Fominykh N; Makhov I; Ivanov K; Guseva Y; Kulagina M; Blokhin S; Kryzhanovskaya N Opt Lett; 2024 Jan; 49(2):330-333. PubMed ID: 38194561 [TBL] [Abstract][Full Text] [Related]
63. Sub-Poissonian fluctuations in a 1D Bose gas: from the quantum quasicondensate to the strongly interacting regime. Jacqmin T; Armijo J; Berrada T; Kheruntsyan KV; Bouchoule I Phys Rev Lett; 2011 Jun; 106(23):230405. PubMed ID: 21770488 [TBL] [Abstract][Full Text] [Related]
64. Polarization-engineered photon statistics and its tomography via optomagnonic interaction. Liang Z; Wu Y; Li J Opt Lett; 2024 May; 49(10):2749-2752. PubMed ID: 38748152 [TBL] [Abstract][Full Text] [Related]
65. Nanophotonic coherent light-matter interfaces based on rare-earth-doped crystals. Zhong T; Kindem JM; Miyazono E; Faraon A Nat Commun; 2015 Sep; 6():8206. PubMed ID: 26364586 [TBL] [Abstract][Full Text] [Related]
66. Intracavity cold atomic ensemble with high optical depth. Jiang Y; Mei Y; Zou Y; Zuo Y; Du S Rev Sci Instrum; 2019 Jan; 90(1):013105. PubMed ID: 30709165 [TBL] [Abstract][Full Text] [Related]
67. Cavity QED with a Bose-Einstein condensate. Brennecke F; Donner T; Ritter S; Bourdel T; Köhl M; Esslinger T Nature; 2007 Nov; 450(7167):268-71. PubMed ID: 17994093 [TBL] [Abstract][Full Text] [Related]
68. Determination of the number of atoms trapped in an optical cavity. McKeever J; Buck JR; Boozer AD; Kimble HJ Phys Rev Lett; 2004 Oct; 93(14):143601. PubMed ID: 15524790 [TBL] [Abstract][Full Text] [Related]
69. Dynamical Phase Transitions to Optomechanical Superradiance. Jäger SB; Cooper J; Holland MJ; Morigi G Phys Rev Lett; 2019 Aug; 123(5):053601. PubMed ID: 31491307 [TBL] [Abstract][Full Text] [Related]
70. Preparation and measurement of tunable high-power sub-Poissonian light using twin beams. Zou H; Zhai S; Guo J; Yang R; Gao J Opt Lett; 2006 Jun; 31(11):1735-7. PubMed ID: 16688278 [TBL] [Abstract][Full Text] [Related]
71. Loss-enabled sub-poissonian light generation in a bimodal nanocavity. Majumdar A; Bajcsy M; Rundquist A; Vučković J Phys Rev Lett; 2012 May; 108(18):183601. PubMed ID: 22681074 [TBL] [Abstract][Full Text] [Related]
72. Coherent Atom-Phonon Interaction through Mode Field Coupling in Hybrid Optomechanical Systems. Cotrufo M; Fiore A; Verhagen E Phys Rev Lett; 2017 Mar; 118(13):133603. PubMed ID: 28409944 [TBL] [Abstract][Full Text] [Related]
73. A Spin-Photon Interface Using Charge-Tunable Quantum Dots Strongly Coupled to a Cavity. Luo Z; Sun S; Karasahin A; Bracker AS; Carter SG; Yakes MK; Gammon D; Waks E Nano Lett; 2019 Oct; 19(10):7072-7077. PubMed ID: 31483668 [TBL] [Abstract][Full Text] [Related]
74. Efficient routing of single photons by one atom and a microtoroidal cavity. Aoki T; Parkins AS; Alton DJ; Regal CA; Dayan B; Ostby E; Vahala KJ; Kimble HJ Phys Rev Lett; 2009 Feb; 102(8):083601. PubMed ID: 19257737 [TBL] [Abstract][Full Text] [Related]
75. Linear and nonlinear optical spectroscopy of a strongly coupled microdisk-quantum dot system. Srinivasan K; Painter O Nature; 2007 Dec; 450(7171):862-5. PubMed ID: 18064009 [TBL] [Abstract][Full Text] [Related]
76. Quadrature squeezed photons from a two-level system. Schulte CH; Hansom J; Jones AE; Matthiesen C; Le Gall C; Atatüre M Nature; 2015 Sep; 525(7568):222-5. PubMed ID: 26322581 [TBL] [Abstract][Full Text] [Related]
77. Intracavity gain gratings. Moreau A; He Q; Zaquine I; Maruani A; Frey R Opt Lett; 2007 Feb; 32(3):208-10. PubMed ID: 17215921 [TBL] [Abstract][Full Text] [Related]
78. Generation of photon number states on demand via cavity quantum electrodynamics. Brattke S; Varcoe BT; Walther H Phys Rev Lett; 2001 Apr; 86(16):3534-7. PubMed ID: 11328016 [TBL] [Abstract][Full Text] [Related]
79. Higher-order photon bunching in a semiconductor microcavity. Assmann M; Veit F; Bayer M; van der Poel M; Hvam JM Science; 2009 Jul; 325(5938):297-300. PubMed ID: 19608912 [TBL] [Abstract][Full Text] [Related]