These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 31745842)

  • 1. Discovery and characterization of a stable lipase with preference toward long-chain fatty acids.
    Chen M; Gao X; Yang W; Sun C; Yang J; Zhang H; Song Y
    Biotechnol Lett; 2020 Jan; 42(1):171-180. PubMed ID: 31745842
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative features between recombinant lipases CALA-like from U. maydis and CALA from C. antarctica in thermal stability and selectivity.
    Robles-Machuca M; Del Campo MM; Camacho-Ruiz MÁ; Ordaz E; Zamora-González EO; Müller-Santos M; Rodríguez JA
    Biotechnol Lett; 2019 Feb; 41(2):241-252. PubMed ID: 30519796
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acidolysis of tristearin with selected long-chain fatty acids.
    Hamam F; Shahidi F
    J Agric Food Chem; 2007 Mar; 55(5):1955-60. PubMed ID: 17288439
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel calb-type lipase discovered by fungal genomes mining.
    Vaquero ME; de Eugenio LI; Martínez MJ; Barriuso J
    PLoS One; 2015; 10(4):e0124882. PubMed ID: 25898146
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An sn-2 regioselective lipase with cis-fatty acid preference from Cordyceps militaris: Biochemical characterization and insights into its regioselective mechanism.
    Lee J; Lee J; Choi Y; Kim T; Chang PS
    Int J Biol Macromol; 2024 Sep; 276(Pt 2):134013. PubMed ID: 39032883
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterizing LipR from Pseudomonas sp. R0-14 and Applying in Enrichment of Polyunsaturated Fatty Acids from Algal Oil.
    Yang W; Xu L; Zhang H; Yan Y
    J Microbiol Biotechnol; 2015 Nov; 25(11):1880-93. PubMed ID: 26215266
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancement of activity and selectivity of Candida rugosa lipase and Candida antarctica lipase A by bioimprinting and/or immobilization for application in the selective ethanolysis of fish oil.
    Kahveci D; Xu X
    Biotechnol Lett; 2011 Oct; 33(10):2065-71. PubMed ID: 21695486
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lipase specificity in the transacylation of triacylglycerin.
    Utsugi A; Kanda A; Hara S
    J Oleo Sci; 2009; 58(3):123-32. PubMed ID: 19202310
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Homologous yeast lipases/acyltransferases exhibit remarkable cold-active properties.
    Neang PM; Subileau M; Perrier V; Dubreucq E
    Appl Microbiol Biotechnol; 2014 Nov; 98(21):8927-36. PubMed ID: 24770385
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Extracellular production of Pseudozyma (Candida) antarctica lipase B with genuine primary sequence in recombinant Escherichia coli.
    Ujiie A; Nakano H; Iwasaki Y
    J Biosci Bioeng; 2016 Mar; 121(3):303-9. PubMed ID: 26272415
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Candida antarctica lipase A effectively concentrates DHA from fish and thraustochytrid oils.
    Akanbi TO; Barrow CJ
    Food Chem; 2017 Aug; 229():509-516. PubMed ID: 28372209
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Immobilization on octyl-agarose beads and some catalytic features of commercial preparations of lipase a from Candida antarctica (Novocor ADL): Comparison with immobilized lipase B from Candida antarctica.
    Arana-Peña S; Lokha Y; Fernández-Lafuente R
    Biotechnol Prog; 2019 Jan; 35(1):e2735. PubMed ID: 30341806
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Blocking the tunnel: engineering of Candida rugosa lipase mutants with short chain length specificity.
    Schmitt J; Brocca S; Schmid RD; Pleiss J
    Protein Eng; 2002 Jul; 15(7):595-601. PubMed ID: 12200542
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The short form of the recombinant CAL-A-type lipase UM03410 from the smut fungus Ustilago maydis exhibits an inherent trans-fatty acid selectivity.
    Brundiek H; Saß S; Evitt A; Kourist R; Bornscheuer UT
    Appl Microbiol Biotechnol; 2012 Apr; 94(1):141-50. PubMed ID: 22294433
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lipase genes in Mucor circinelloides: identification, sub-cellular location, phylogenetic analysis and expression profiling during growth and lipid accumulation.
    Zan X; Tang X; Chu L; Zhao L; Chen H; Chen YQ; Chen W; Song Y
    J Ind Microbiol Biotechnol; 2016 Oct; 43(10):1467-80. PubMed ID: 27535142
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rhodococcus sp. strain CR-53 LipR, the first member of a new bacterial lipase family (family X) displaying an unusual Y-type oxyanion hole, similar to the Candida antarctica lipase clan.
    Bassegoda A; Pastor FI; Diaz P
    Appl Environ Microbiol; 2012 Mar; 78(6):1724-32. PubMed ID: 22226953
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis of structured lipids containing medium-chain and omega-3 fatty acids.
    Hamam F; Shahidi F
    J Agric Food Chem; 2006 Jun; 54(12):4390-6. PubMed ID: 16756372
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tuning Selectivity in CalA Lipase: Beyond Tunnel Engineering.
    Alejaldre L; Lemay-St-Denis C; Pelletier JN; Quaglia D
    Biochemistry; 2023 Jan; 62(2):396-409. PubMed ID: 36580299
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Shifting-Nitroxides to Investigate Enzymatic Hydrolysis of Fatty Acids by Lipases Using Electron Paramagnetic Resonance in Turbid Media.
    Audran G; Jacoutot S; Jugniot N; Marque SRA; Mellet P
    Anal Chem; 2019 May; 91(9):5504-5507. PubMed ID: 31013060
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isolation and functional expression of a novel lipase gene isolated directly from oil-contaminated soil.
    Zuo K; Zhang L; Yao H; Wang J
    Acta Biochim Pol; 2010; 57(3):305-11. PubMed ID: 20931089
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.