These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

315 related articles for article (PubMed ID: 31746243)

  • 21. Envisioning the innovations in nanomedicine to combat visceral leishmaniasis: for future theranostic application.
    Singh OP; Gedda MR; Mudavath SL; Srivastava ON; Sundar S
    Nanomedicine (Lond); 2019 Jul; 14(14):1911-1927. PubMed ID: 31313971
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The Influence of Nanoparticle Properties on Oral Bioavailability of Drugs.
    Wang Y; Pi C; Feng X; Hou Y; Zhao L; Wei Y
    Int J Nanomedicine; 2020; 15():6295-6310. PubMed ID: 32943863
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Optically modulated cancer therapeutic delivery: past, present and future.
    Strong LE; West JL
    Ther Deliv; 2015; 6(5):545-58. PubMed ID: 26001172
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ascorbate-conjugated nanoparticles for promoted oral delivery of therapeutic drugs via sodium-dependent vitamin C transporter 1 (SVCT1).
    Luo Q; Jiang M; Kou L; Zhang L; Li G; Yao Q; Shang L; Chen Y
    Artif Cells Nanomed Biotechnol; 2018; 46(sup1):198-208. PubMed ID: 29260899
    [No Abstract]   [Full Text] [Related]  

  • 25. Ocular Drug Delivery: Role of Degradable Polymeric Nanocarriers for Ophthalmic Application.
    Tsai CH; Wang PY; Lin IC; Huang H; Liu GS; Tseng CL
    Int J Mol Sci; 2018 Sep; 19(9):. PubMed ID: 30235809
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Endogenous pH-responsive nanoparticles with programmable size changes for targeted tumor therapy and imaging applications.
    Wu W; Luo L; Wang Y; Wu Q; Dai HB; Li JS; Durkan C; Wang N; Wang GX
    Theranostics; 2018; 8(11):3038-3058. PubMed ID: 29896301
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fostering the unleashing potential of nanocarriers-mediated delivery of ocular therapeutics.
    Datta D; Priyanka Bandi S; Colaco V; Dhas N; Siva Reddy DV; Vora LK
    Int J Pharm; 2024 Jun; 658():124192. PubMed ID: 38703931
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Drug delivery system of anti-fungal and parasitic agents.
    Maesaki S
    Curr Pharm Des; 2002; 8(6):433-40. PubMed ID: 12069380
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Silica-Based Nanoparticles for Biomedical Applications: From Nanocarriers to Biomodulators.
    Yang Y; Zhang M; Song H; Yu C
    Acc Chem Res; 2020 Aug; 53(8):1545-1556. PubMed ID: 32667182
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A dual-targeting strategy for enhanced drug delivery and synergistic therapy based on thermosensitive nanoparticles.
    Wang M; You C; Gao Z; Wu H; Sun B; Zhu X; Chen R
    J Biomater Sci Polym Ed; 2018 Aug; 29(11):1360-1374. PubMed ID: 29611463
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nanoparticles and Its Implications in HIV/AIDS Therapy.
    Oti VB
    Curr Drug Discov Technol; 2020; 17(4):448-456. PubMed ID: 31250759
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Highly stable RGD/disulfide bridge-bearing star-shaped biodegradable nanocarriers for enhancing drug-loading efficiency, rapid cellular uptake, and on-demand cargo release.
    Yan J; Zhang H; Cheng F; He Y; Su T; Zhang X; Zhang M; Zhu Y; Li C; Cao J; He B
    Int J Nanomedicine; 2018; 13():8247-8268. PubMed ID: 30584298
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Functional nanocarriers by miniaturization of polymeric materials.
    Wischke C; Lendlein A
    Nanomedicine (Lond); 2016 Jun; 11(12):1507-9. PubMed ID: 27198974
    [No Abstract]   [Full Text] [Related]  

  • 34. Nanocarriers' entry into the cell: relevance to drug delivery.
    Hillaireau H; Couvreur P
    Cell Mol Life Sci; 2009 Sep; 66(17):2873-96. PubMed ID: 19499185
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Chitosan-functionalized lipid-polymer hybrid nanoparticles for oral delivery of silymarin and enhanced lipid-lowering effect in NAFLD.
    Liang J; Liu Y; Liu J; Li Z; Fan Q; Jiang Z; Yan F; Wang Z; Huang P; Feng N
    J Nanobiotechnology; 2018 Sep; 16(1):64. PubMed ID: 30176941
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Impact of the strategy adopted for drug loading in nonporous silica nanoparticles on the drug release and cytotoxic activity.
    Riva B; Bellini M; Corvi E; Verderio P; Rozek E; Colzani B; Avvakumova S; Radeghieri A; Rizzuto MA; Morasso C; Colombo M; Prosperi D
    J Colloid Interface Sci; 2018 Jun; 519():18-26. PubMed ID: 29477896
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Inhalable porous particles as dual micro-nano carriers demonstrating efficient lung drug delivery for treatment of tuberculosis.
    Campos Pacheco JE; Yalovenko T; Riaz A; Kotov N; Davids C; Persson A; Falkman P; Feiler A; Godaly G; Johnson CM; Ekström M; Pilkington GA; Valetti S
    J Control Release; 2024 May; 369():231-250. PubMed ID: 38479444
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Preparation and evaluation of tumour microenvironment response multistage nanoparticles for epirubicin delivery and deep tumour penetration.
    Dai J; Han S; Ju F; Han M; Xu L; Zhang R; Sun Y
    Artif Cells Nanomed Biotechnol; 2018; 46(sup2):860-873. PubMed ID: 29771149
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nanomedicine approaches for sirolimus delivery: a review of pharmaceutical properties and preclinical studies.
    Haeri A; Osouli M; Bayat F; Alavi S; Dadashzadeh S
    Artif Cells Nanomed Biotechnol; 2018; 46(sup1):1-14. PubMed ID: 29186990
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Targeted delivery of arjunglucoside I using surface hydrophilic and hydrophobic nanocarriers to combat experimental leishmaniasis.
    Tyagi R; Lala S; Verma AK; Nandy AK; Mahato SB; Maitra A; Basu MK
    J Drug Target; 2005 Apr; 13(3):161-71. PubMed ID: 16036304
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.