BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 31746292)

  • 1. Consequences of Dicarbonyl Stress on Skeletal Muscle Proteins in Type 2 Diabetes.
    Ahmad K; Shaikh S; Lee EJ; Lee YH; Choi I
    Curr Protein Pept Sci; 2020; 21(9):878-889. PubMed ID: 31746292
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dicarbonyls Generation, Toxicities, Detoxifications and Potential Roles in Diabetes Complications.
    Alouffi S; Khan MWA
    Curr Protein Pept Sci; 2020; 21(9):890-898. PubMed ID: 31660813
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Role of Glyoxalase in Glycation and Carbonyl Stress Induced Metabolic Disorders.
    Saeed M; Kausar MA; Singh R; Siddiqui AJ; Akhter A
    Curr Protein Pept Sci; 2020; 21(9):846-859. PubMed ID: 32368974
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glycation and Antioxidants: Hand in the Glove of Antiglycation and Natural Antioxidants.
    Khanam A; Ahmad S; Husain A; Rehman S; Farooqui A; Yusuf MA
    Curr Protein Pept Sci; 2020; 21(9):899-915. PubMed ID: 32039678
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dicarbonyl stress and glyoxalase enzyme system regulation in human skeletal muscle.
    Mey JT; Blackburn BK; Miranda ER; Chaves AB; Briller J; Bonini MG; Haus JM
    Am J Physiol Regul Integr Comp Physiol; 2018 Feb; 314(2):R181-R190. PubMed ID: 29046313
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of Reactive Dicarbonyls on Biological Macromolecules- Role in Metabolic Disorders.
    Ahmad S; Rehman S
    Curr Protein Pept Sci; 2020; 21(9):844-845. PubMed ID: 33323095
    [No Abstract]   [Full Text] [Related]  

  • 7. Associations of dicarbonyl stress with complement activation: the CODAM study.
    Xin Y; Hertle E; van der Kallen CJH; Schalkwijk CG; Stehouwer CDA; van Greevenbroek MMJ
    Diabetologia; 2020 May; 63(5):1032-1042. PubMed ID: 31993713
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The dicarbonyl proteome: proteins susceptible to dicarbonyl glycation at functional sites in health, aging, and disease.
    Rabbani N; Thornalley PJ
    Ann N Y Acad Sci; 2008 Apr; 1126():124-7. PubMed ID: 18448805
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Post-Glucose Load Plasma α-Dicarbonyl Concentrations Are Increased in Individuals With Impaired Glucose Metabolism and Type 2 Diabetes: The CODAM Study.
    Maessen DE; Hanssen NM; Scheijen JL; van der Kallen CJ; van Greevenbroek MM; Stehouwer CD; Schalkwijk CG
    Diabetes Care; 2015 May; 38(5):913-20. PubMed ID: 25710921
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dicarbonyls and glyoxalase in disease mechanisms and clinical therapeutics.
    Rabbani N; Xue M; Thornalley PJ
    Glycoconj J; 2016 Aug; 33(4):513-25. PubMed ID: 27406712
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemistry and pathobiology of advanced glycation end products.
    Schleicher ED; Bierhaus A; Häring HU; Nawroth PP; Lehmann R
    Contrib Nephrol; 2001; (131):1-9. PubMed ID: 11125554
    [No Abstract]   [Full Text] [Related]  

  • 12. Dicarbonyl derived post-translational modifications: chemistry bridging biology and aging-related disease.
    Sibbersen C; Johannsen M
    Essays Biochem; 2020 Feb; 64(1):97-110. PubMed ID: 31939602
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dicarbonyl stress in cell and tissue dysfunction contributing to ageing and disease.
    Rabbani N; Thornalley PJ
    Biochem Biophys Res Commun; 2015 Mar; 458(2):221-6. PubMed ID: 25666945
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Advanced glycation end products induce skeletal muscle atrophy and insulin resistance via activating ROS-mediated ER stress PERK/FOXO1 signaling.
    Du H; Ma Y; Wang X; Zhang Y; Zhu L; Shi S; Pan S; Liu Z
    Am J Physiol Endocrinol Metab; 2023 Mar; 324(3):E279-E287. PubMed ID: 36724125
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcriptional control of glyoxalase 1 by Nrf2 provides a stress-responsive defence against dicarbonyl glycation.
    Xue M; Rabbani N; Momiji H; Imbasi P; Anwar MM; Kitteringham N; Park BK; Souma T; Moriguchi T; Yamamoto M; Thornalley PJ
    Biochem J; 2012 Apr; 443(1):213-22. PubMed ID: 22188542
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein and nucleotide damage by glyoxal and methylglyoxal in physiological systems--role in ageing and disease.
    Thornalley PJ
    Drug Metabol Drug Interact; 2008; 23(1-2):125-50. PubMed ID: 18533367
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reaction of metformin with dicarbonyl compounds. Possible implication in the inhibition of advanced glycation end product formation.
    Ruggiero-Lopez D; Lecomte M; Moinet G; Patereau G; Lagarde M; Wiernsperger N
    Biochem Pharmacol; 1999 Dec; 58(11):1765-73. PubMed ID: 10571251
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dicarbonyl stress in clinical obesity.
    Masania J; Malczewska-Malec M; Razny U; Goralska J; Zdzienicka A; Kiec-Wilk B; Gruca A; Stancel-Mozwillo J; Dembinska-Kiec A; Rabbani N; Thornalley PJ
    Glycoconj J; 2016 Aug; 33(4):581-9. PubMed ID: 27338619
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Increased Dicarbonyl Stress as a Novel Mechanism of Multi-Organ Failure in Critical Illness.
    van Bussel BC; van de Poll MC; Schalkwijk CG; Bergmans DC
    Int J Mol Sci; 2017 Feb; 18(2):. PubMed ID: 28178202
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assay of methylglyoxal and glyoxal and control of peroxidase interference.
    Thornalley PJ; Rabbani N
    Biochem Soc Trans; 2014 Apr; 42(2):504-10. PubMed ID: 24646269
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.