BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 31746557)

  • 1. Leaching Mechanisms of Industrial Powders of Spent Nickel Metal Hydride Batteries in a Pilot-Scale Reactor.
    Zielinski M; Cassayre L; Destrac P; Coppey N; Garin G; Biscans B
    ChemSusChem; 2020 Feb; 13(3):616-628. PubMed ID: 31746557
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Process optimization and kinetics for leaching of rare earth metals from the spent Ni-metal hydride batteries.
    Meshram P; Pandey BD; Mankhand TR
    Waste Manag; 2016 May; 51():196-203. PubMed ID: 26746588
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of spent nickel-metal hydride batteries and a preliminary economic evaluation of the recovery processes.
    Lin SL; Huang KL; Wang IC; Chou IC; Kuo YM; Hung CH; Lin C
    J Air Waste Manag Assoc; 2016 Mar; 66(3):296-306. PubMed ID: 26651506
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A multi-analytical methodology for the characterization of industrial samples of spent Ni-MH battery powders.
    Zielinski M; Cassayre L; Floquet P; Macouin M; Destrac P; Coppey N; Foulet C; Biscans B
    Waste Manag; 2020 Dec; 118():677-687. PubMed ID: 33011545
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rare earth element recycling from waste nickel-metal hydride batteries.
    Yang X; Zhang J; Fang X
    J Hazard Mater; 2014 Aug; 279():384-8. PubMed ID: 25089667
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Leaching of rare earth elements and base metals from spent NiMH batteries using gluconate and its potential bio-oxidation products.
    Rasoulnia P; Barthen R; Puhakka JA; Lakaniemi AM
    J Hazard Mater; 2021 Jul; 414():125564. PubMed ID: 33684819
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient Recovery of Rare Earth Elements and Zinc from Spent Ni-Metal Hydride Batteries: Statistical Studies.
    Weshahy AR; Gouda AA; Atia BM; Sakr AK; Al-Otaibi JS; Almuqrin A; Hanfi MY; Sayyed MI; El Sheikh R; Radwan HA; Hassen FS; Gado MA
    Nanomaterials (Basel); 2022 Jul; 12(13):. PubMed ID: 35808142
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimization of metals and rare earth elements leaching from spent Ni-MH batteries by response surface methodology.
    Otron AMA; Millogo TJF; Tran LH; Blais JF
    Environ Technol; 2023 Aug; ():1-13. PubMed ID: 37524656
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lanthanide-alkali double sulfate precipitation from strong sulfuric acid NiMH battery waste leachate.
    Porvali A; Wilson BP; Lundström M
    Waste Manag; 2018 Jan; 71():381-389. PubMed ID: 29110941
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Geochemical and mineralogical characterization of phosphogypsum and leaching tests for the prediction of the mobility of trace elements.
    Akfas F; Elghali A; Bodinier JL; Parat F; Muñoz M
    Environ Sci Pollut Res Int; 2023 Mar; 30(15):43778-43794. PubMed ID: 36662430
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reduction-ammoniacal leaching to recycle lithium, cobalt, and nickel from spent lithium-ion batteries with a hydrothermal method: Effect of reductants and ammonium salts.
    Wang S; Wang C; Lai F; Yan F; Zhang Z
    Waste Manag; 2020 Feb; 102():122-130. PubMed ID: 31671359
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selective Scandium (Sc) Extraction from Bauxite Residue (Red Mud) Obtained by Alkali Fusion-Leaching Method.
    Shoppert A; Loginova I; Napol'skikh J; Kyrchikov A; Chaikin L; Rogozhnikov D; Valeev D
    Materials (Basel); 2022 Jan; 15(2):. PubMed ID: 35057151
    [TBL] [Abstract][Full Text] [Related]  

  • 13. REE(III) recovery from spent NiMH batteries as REE double sulfates and their simultaneous hydrolysis and wet-oxidation.
    Porvali A; Agarwal V; Lundström M
    Waste Manag; 2020 Apr; 107():66-73. PubMed ID: 32278217
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recovery of rare earths from spent NdFeB magnets of wind turbine: Leaching and kinetic aspects.
    Kumari A; Sinha MK; Pramanik S; Sahu SK
    Waste Manag; 2018 May; 75():486-498. PubMed ID: 29397277
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Elemental analysis of occupational and environmental lung diseases by electron probe microanalyzer with wavelength dispersive spectrometer.
    Takada T; Moriyama H; Suzuki E
    Respir Investig; 2014 Jan; 52(1):5-13. PubMed ID: 24388365
    [TBL] [Abstract][Full Text] [Related]  

  • 16. End-of-life nickel-cadmium accumulators: characterization of electrode materials and industrial Black Mass.
    Hazotte C; Leclerc N; Diliberto S; Meux E; Lapicque F
    Environ Technol; 2015; 36(5-8):796-805. PubMed ID: 25192032
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermal treatment and ammoniacal leaching for the recovery of valuable metals from spent lithium-ion batteries.
    Chen Y; Liu N; Hu F; Ye L; Xi Y; Yang S
    Waste Manag; 2018 May; 75():469-476. PubMed ID: 29478957
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recycling of spent nickel-cadmium batteries based on bioleaching process.
    Zhu N; Zhang L; Li C; Cai C
    Waste Manag; 2003; 23(8):703-8. PubMed ID: 14522188
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flow evaluation of the leaching hazardous materials from spent nickel-cadmium batteries discarded in different water surroundings.
    Guo X; Song Y; Nan J
    Environ Sci Pollut Res Int; 2018 Feb; 25(6):5514-5520. PubMed ID: 29218575
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of bio-dissolution of spent Ni-Cd batteries by sewage sludge using ferrous ions and elemental sulfur as substrate.
    Zhao L; Zhu NW; Wang XH
    Chemosphere; 2008 Jan; 70(6):974-81. PubMed ID: 17884135
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.