These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 31746676)

  • 1. Isolation of four xylanases capable of hydrolyzing corn fiber xylan from
    Hagiwara Y; Mihara Y; Sakagami K; Sagara R; Bat-Erdene U; Yatsunami R; Nakamura S
    Biosci Biotechnol Biochem; 2020 Mar; 84(3):640-650. PubMed ID: 31746676
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of a xylanase belonging to the glycoside hydrolase family 5 subfamily 35 from Paenibacillus sp. H2C.
    Hagiwara Y; Okeda T; Okuda K; Yatsunami R; Nakamura S
    Biosci Biotechnol Biochem; 2022 Dec; 87(1):54-62. PubMed ID: 36352459
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of Paenibacillus curdlanolyticus intracellular xylanase Xyn10B encoded by the xyn10B gene.
    Sudo M; Sakka M; Kimura T; Ratanakhanokchai K; Sakka K
    Biosci Biotechnol Biochem; 2010; 74(11):2358-60. PubMed ID: 21071839
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Purification and characterization of an endo-xylanase from Trichoderma sp., with xylobiose as the main product from xylan hydrolysis.
    Fu LH; Jiang N; Li CX; Luo XM; Zhao S; Feng JX
    World J Microbiol Biotechnol; 2019 Oct; 35(11):171. PubMed ID: 31673786
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Paenibacillus curdlanolyticus B-6 xylanase Xyn10C capable of producing a doubly arabinose-substituted xylose, α-L-Araf-(1→2)-[α-L-Araf-(1→3)]-D-Xylp, from rye arabinoxylan.
    Imjongjairak S; Jommuengbout P; Karpilanondh P; Katsuzaki H; Sakka M; Kimura T; Pason P; Tachaapaikoon C; Romsaiyud J; Ratanakhanokchai K; Sakka K
    Enzyme Microb Technol; 2015 May; 72():1-9. PubMed ID: 25837501
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cell surface xylanases of the glycoside hydrolase family 10 are essential for xylan utilization by Paenibacillus sp. W-61 as generators of xylo-oligosaccharide inducers for the xylanase genes.
    Fukuda M; Watanabe S; Yoshida S; Itoh H; Itoh Y; Kamio Y; Kaneko J
    J Bacteriol; 2010 Apr; 192(8):2210-9. PubMed ID: 20154127
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence for temporal regulation of the two Pseudomonas cellulosa xylanases belonging to glycoside hydrolase family 11.
    Emami K; Nagy T; Fontes CM; Ferreira LM; Gilbert HJ
    J Bacteriol; 2002 Aug; 184(15):4124-33. PubMed ID: 12107129
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Paenibacillus sp. strain E18 bifunctional xylanase-glucanase with a single catalytic domain.
    Shi P; Tian J; Yuan T; Liu X; Huang H; Bai Y; Yang P; Chen X; Wu N; Yao B
    Appl Environ Microbiol; 2010 Jun; 76(11):3620-4. PubMed ID: 20382811
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Purification and characterization of a GH11 xylanase from biobutanol-producing Clostridium beijerinckii G117.
    Ng CH; He J; Yang KL
    Appl Biochem Biotechnol; 2015 Mar; 175(6):2832-44. PubMed ID: 25564206
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The family 22 carbohydrate-binding module of bifunctional xylanase/β-glucanase Xyn10E from Paenibacillus curdlanolyticus B-6 has an important role in lignocellulose degradation.
    Sermsathanaswadi J; Baramee S; Tachaapaikoon C; Pason P; Ratanakhanokchai K; Kosugi A
    Enzyme Microb Technol; 2017 Jan; 96():75-84. PubMed ID: 27871388
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An β-1,4-xylanase with exo-enzyme activity produced by Paenibacillus xylanilyticus KJ-03 and its cloning and characterization.
    Park DJ; Lee YS; Chang J; Fang SJ; Choi YL
    J Microbiol Biotechnol; 2013 Mar; 23(3):397-404. PubMed ID: 23462014
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Screening and production study of microbial xylanase producers from Brazilian Cerrado.
    Alves-Prado HF; Pavezzi FC; Leite RS; de Oliveira VM; Sette LD; Dasilva R
    Appl Biochem Biotechnol; 2010 May; 161(1-8):333-46. PubMed ID: 19898784
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enzyme hydrolysis and ethanol fermentation of liquid hot water and AFEX pretreated distillers' grains at high-solids loadings.
    Kim Y; Hendrickson R; Mosier NS; Ladisch MR; Bals B; Balan V; Dale BE
    Bioresour Technol; 2008 Aug; 99(12):5206-15. PubMed ID: 18023338
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel alkaliphilic xylanase from the newly isolated mesophilic Bacillus sp. MX47: production, purification, and characterization.
    Chi WJ; Park DY; Chang YK; Hong SK
    Appl Biochem Biotechnol; 2012 Oct; 168(4):899-909. PubMed ID: 22941270
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural insights into the specificity of Xyn10B from Paenibacillus barcinonensis and its improved stability by forced protein evolution.
    Gallardo O; Pastor FI; Polaina J; Diaz P; Łysek R; Vogel P; Isorna P; González B; Sanz-Aparicio J
    J Biol Chem; 2010 Jan; 285(4):2721-33. PubMed ID: 19940147
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genomic and transcriptomic analysis of carbohydrate utilization by Paenibacillus sp. JDR-2: systems for bioprocessing plant polysaccharides.
    Sawhney N; Crooks C; Chow V; Preston JF; St John FJ
    BMC Genomics; 2016 Feb; 17():131. PubMed ID: 26912334
    [TBL] [Abstract][Full Text] [Related]  

  • 17. GH30 Glucuronoxylan-Specific Xylanase from Streptomyces turgidiscabies C56.
    Maehara T; Yagi H; Sato T; Ohnishi-Kameyama M; Fujimoto Z; Kamino K; Kitamura Y; St John F; Yaoi K; Kaneko S
    Appl Environ Microbiol; 2018 Feb; 84(4):. PubMed ID: 29180367
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biochemical characterization of a novel xylanase from Paenibacillus barengoltzii and its application in xylooligosaccharides production from corncobs.
    Liu X; Liu Y; Jiang Z; Liu H; Yang S; Yan Q
    Food Chem; 2018 Oct; 264():310-318. PubMed ID: 29853381
    [TBL] [Abstract][Full Text] [Related]  

  • 19. GH10 XynA is the main xylanase identified in the crude enzymatic extract of Paenibacillus sp. A59 when grown on xylan or lignocellulosic biomass.
    Ghio S; Insani EM; Piccinni FE; Talia PM; Grasso DH; Campos E
    Microbiol Res; 2016; 186-187():16-26. PubMed ID: 27242139
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel reducing-end xylose-releasing exo-oligoxylanase (PphRex8A) from Paenibacillus physcomitrellae XB.
    Wang L; Zhang XJ; Li YH
    Enzyme Microb Technol; 2022 Oct; 160():110086. PubMed ID: 35785629
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.