These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

472 related articles for article (PubMed ID: 31746687)

  • 1. Lymph Node Metastasis Prediction from Primary Breast Cancer US Images Using Deep Learning.
    Zhou LQ; Wu XL; Huang SY; Wu GG; Ye HR; Wei Q; Bao LY; Deng YB; Li XR; Cui XW; Dietrich CF
    Radiology; 2020 Jan; 294(1):19-28. PubMed ID: 31746687
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep learning method with a convolutional neural network for image classification of normal and metastatic axillary lymph nodes on breast ultrasonography.
    Ozaki J; Fujioka T; Yamaga E; Hayashi A; Kujiraoka Y; Imokawa T; Takahashi K; Okawa S; Yashima Y; Mori M; Kubota K; Oda G; Nakagawa T; Tateishi U
    Jpn J Radiol; 2022 Aug; 40(8):814-822. PubMed ID: 35284996
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep Learning Prediction of Axillary Lymph Node Metastasis in Breast Cancer Patients Using Clinical Implication-Applied Preprocessed CT Images.
    Park TY; Kwon LM; Hyeon J; Cho BJ; Kim BJ
    Curr Oncol; 2024 Apr; 31(4):2278-2288. PubMed ID: 38668072
    [No Abstract]   [Full Text] [Related]  

  • 4. Predicting Axillary Response to Neoadjuvant Chemotherapy: Breast MRI and US in Patients with Node-Positive Breast Cancer.
    Kim R; Chang JM; Lee HB; Lee SH; Kim SY; Kim ES; Cho N; Moon WK
    Radiology; 2019 Oct; 293(1):49-57. PubMed ID: 31407967
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A non-invasive preoperative prediction model for predicting axillary lymph node metastasis in breast cancer based on a machine learning approach: combining ultrasonographic parameters and breast gamma specific imaging features.
    Cai R; Deng L; Zhang H; Zhang H; Wu Q
    Radiat Oncol; 2024 May; 19(1):63. PubMed ID: 38802938
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Axillary lymph node metastasis status prediction of early-stage breast cancer using convolutional neural networks.
    Lee YW; Huang CS; Shih CC; Chang RF
    Comput Biol Med; 2021 Mar; 130():104206. PubMed ID: 33421823
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Axillary Lymph Node Evaluation Utilizing Convolutional Neural Networks Using MRI Dataset.
    Ha R; Chang P; Karcich J; Mutasa S; Fardanesh R; Wynn RT; Liu MZ; Jambawalikar S
    J Digit Imaging; 2018 Dec; 31(6):851-856. PubMed ID: 29696472
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of axillary lymph node metastasis in early breast cancer patients with ultrasonic videos based deep learning.
    Li WB; Du ZC; Liu YJ; Gao JX; Wang JG; Dai Q; Huang WH
    Front Oncol; 2023; 13():1219838. PubMed ID: 37719009
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Attention-based Deep Learning for the Preoperative Differentiation of Axillary Lymph Node Metastasis in Breast Cancer on DCE-MRI.
    Gao J; Zhong X; Li W; Li Q; Shao H; Wang Z; Dai Y; Ma H; Shi Y; Zhang H; Duan S; Zhang K; Yang P; Zhao F; Zhang H; Xie H; Mao N
    J Magn Reson Imaging; 2023 Jun; 57(6):1842-1853. PubMed ID: 36219519
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep Learning Mechanism for Predicting the Axillary Lymph Node Metastasis in Patients with Primary Breast Cancer.
    Ashokkumar N; Meera S; Anandan P; Murthy MYB; Kalaivani KS; Alahmadi TA; Alharbi SA; Raghavan SS; Jayadhas SA
    Biomed Res Int; 2022; 2022():8616535. PubMed ID: 35993045
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of Traditional Radiomics, Deep Learning Radiomics and Fusion Methods for Axillary Lymph Node Metastasis Prediction in Breast Cancer.
    Li X; Yang L; Jiao X
    Acad Radiol; 2023 Jul; 30(7):1281-1287. PubMed ID: 36376154
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Association between US features of primary tumor and axillary lymph node metastasis in patients with clinical T1-T2N0 breast cancer.
    Bae MS; Shin SU; Song SE; Ryu HS; Han W; Moon WK
    Acta Radiol; 2018 Apr; 59(4):402-408. PubMed ID: 28748712
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep learning radiomics of ultrasonography for comprehensively predicting tumor and axillary lymph node status after neoadjuvant chemotherapy in breast cancer patients: A multicenter study.
    Gu J; Tong T; Xu D; Cheng F; Fang C; He C; Wang J; Wang B; Yang X; Wang K; Tian J; Jiang T
    Cancer; 2023 Feb; 129(3):356-366. PubMed ID: 36401611
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Computerized System to Assess Axillary Lymph Node Malignancy from Sonographic Images.
    Chmielewski A; Dufort P; Scaranelo AM
    Ultrasound Med Biol; 2015 Oct; 41(10):2690-9. PubMed ID: 26206257
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sensitivity, Specificity and Accuracy of Ultrasound in Diagnosis of Breast Cancer Metastasis to the Axillary Lymph Nodes in Chinese Patients.
    Zhang YN; Wang CJ; Xu Y; Zhu QL; Zhou YD; Zhang J; Mao F; Jiang YX; Sun Q
    Ultrasound Med Biol; 2015 Jul; 41(7):1835-41. PubMed ID: 25933712
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep learning radiomics of ultrasonography: Identifying the risk of axillary non-sentinel lymph node involvement in primary breast cancer.
    Guo X; Liu Z; Sun C; Zhang L; Wang Y; Li Z; Shi J; Wu T; Cui H; Zhang J; Tian J; Tian J
    EBioMedicine; 2020 Oct; 60():103018. PubMed ID: 32980697
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distinction between benign and malignant breast masses at breast ultrasound using deep learning method with convolutional neural network.
    Fujioka T; Kubota K; Mori M; Kikuchi Y; Katsuta L; Kasahara M; Oda G; Ishiba T; Nakagawa T; Tateishi U
    Jpn J Radiol; 2019 Jun; 37(6):466-472. PubMed ID: 30888570
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Artificial neural network models to predict nodal status in clinically node-negative breast cancer.
    Dihge L; Ohlsson M; Edén P; Bendahl PO; Rydén L
    BMC Cancer; 2019 Jun; 19(1):610. PubMed ID: 31226956
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Convolutional Neural Network Detection of Axillary Lymph Node Metastasis Using Standard Clinical Breast MRI.
    Ren T; Cattell R; Duanmu H; Huang P; Li H; Vanguri R; Liu MZ; Jambawalikar S; Ha R; Wang F; Cohen J; Bernstein C; Bangiyev L; Duong TQ
    Clin Breast Cancer; 2020 Jun; 20(3):e301-e308. PubMed ID: 32139272
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multitask Deep Learning-Based Whole-Process System for Automatic Diagnosis of Breast Lesions and Axillary Lymph Node Metastasis Discrimination from Dynamic Contrast-Enhanced-MRI: A Multicenter Study.
    Zhou H; Hua Z; Gao J; Lin F; Chen Y; Zhang S; Zheng T; Wang Z; Shao H; Li W; Liu F; Li Q; Chen J; Wang X; Zhao F; Qu N; Xie H; Ma H; Zhang H; Mao N
    J Magn Reson Imaging; 2024 May; 59(5):1710-1722. PubMed ID: 37497811
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.