These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 31746801)

  • 41. Novel eco-friendly amino-modified nanoparticles for phenol removal from aqueous solution.
    Younis AM; Elkady EM; Saleh SM
    Environ Sci Pollut Res Int; 2020 Aug; 27(24):30694-30705. PubMed ID: 32468377
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Upgraded modified forms of bituminous coal for the removal of safranin-T dye from aqueous solution.
    Shaban M; Abukhadra MR; Shahien MG; Khan AAP
    Environ Sci Pollut Res Int; 2017 Aug; 24(22):18135-18151. PubMed ID: 28631125
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Adsorption characteristics of Pb(II) from aqueous solutions onto a natural biosorbent, fallen arborvitae leaves.
    Shi J; Zhao Z; Liang Z; Sun T
    Water Sci Technol; 2016; 73(10):2422-9. PubMed ID: 27191563
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Preparation and characterization of chitosan/Fe
    Broujeni BR; Nilchi A; Hassani AH; Saberi R
    Water Sci Technol; 2018 Sep; 78(3-4):708-720. PubMed ID: 30208011
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Kinetic and equilibrium profile of the adsorptive removal of Acid Red 17 dye by surfactant-modified fuller's earth.
    Shah J; Jan MR; Muhammad M; Ara B; Fahmeeda F
    Water Sci Technol; 2017 Mar; 75(5-6):1410-1420. PubMed ID: 28333056
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Removal of phenol from aqueous solutions by magnetic oxide graphene nanoparticles modified with ionic liquids using the Taguchi optimization approach.
    Gholami-Bonabi L; Ziaefar N; Sheikhloie H
    Water Sci Technol; 2020 Jan; 81(2):228-240. PubMed ID: 32333656
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Green synthesis of nano-zero-valent iron from Nettle and Thyme leaf extracts and their application for the removal of cephalexin antibiotic from aqueous solutions.
    Leili M; Fazlzadeh M; Bhatnagar A
    Environ Technol; 2018 May; 39(9):1158-1172. PubMed ID: 28443364
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Removal of Fluoride from Drinking Water by Sorption Using Diatomite Modified with Aluminum Hydroxide.
    Akafu T; Chimdi A; Gomoro K
    J Anal Methods Chem; 2019; 2019():4831926. PubMed ID: 31886021
    [TBL] [Abstract][Full Text] [Related]  

  • 49. 2-line ferrihydrite: synthesis, characterization and its adsorption behaviour for removal of Pb(II), Cd(II), Cu(II) and Zn(II) from aqueous solutions.
    Rout K; Mohapatra M; Anand S
    Dalton Trans; 2012 Mar; 41(11):3302-12. PubMed ID: 22286102
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Hierarchical approach towards adsorptive removal of Alizarin Red S dye using native chitosan and its successively modified versions.
    Khapre MA; Jugade RM
    Water Sci Technol; 2020 Aug; 82(4):715-731. PubMed ID: 32970624
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Removal of PFOA and PFOS from aqueous solutions using activated carbon produced from Vitis vinifera leaf litter.
    Fagbayigbo BO; Opeolu BO; Fatoki OS; Akenga TA; Olatunji OS
    Environ Sci Pollut Res Int; 2017 May; 24(14):13107-13120. PubMed ID: 28382450
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Removal of Acid Orange 7 from aqueous solution using magnetic graphene/chitosan: a promising nano-adsorbent.
    Sheshmani S; Ashori A; Hasanzadeh S
    Int J Biol Macromol; 2014 Jul; 68():218-24. PubMed ID: 24813679
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Efficient removal of Pb(II) from aqueous solution by a novel ion imprinted magnetic biosorbent: Adsorption kinetics and mechanisms.
    He Y; Wu P; Xiao W; Li G; Yi J; He Y; Chen C; Ding P; Duan Y
    PLoS One; 2019; 14(3):e0213377. PubMed ID: 30917141
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Comparison of novel Ziziphus lotus adsorbent and industrial carbon on methylene blue removal from aqueous solutions.
    Msaad A; Belbahloul M; El Hajjaji S; Zouhri A
    Water Sci Technol; 2018 Dec; 78(10):2055-2063. PubMed ID: 30629533
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Enhancing adsorption capacity of Egyptian diatomaceous earth by thermo-chemical purification: Methylene blue uptake.
    Mohamed EA; Selim AQ; Zayed AM; Komarneni S; Mobarak M; Seliem MK
    J Colloid Interface Sci; 2019 Jan; 534():408-419. PubMed ID: 30245338
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Hydrated lanthanum oxide-modified diatomite as highly efficient adsorbent for low-concentration phosphate removal from secondary effluents.
    Wu Y; Li X; Yang Q; Wang D; Xu Q; Yao F; Chen F; Tao Z; Huang X
    J Environ Manage; 2019 Feb; 231():370-379. PubMed ID: 30368146
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Controlled synthesis of Zeolite adsorbent from low-grade diatomite: A case study of self-assembled sodalite microspheres.
    Sun L; Wu J; Wang J; Yu G; Liu J; Du Y; Li Y; Li H
    J Environ Sci (China); 2020 May; 91():92-104. PubMed ID: 32172986
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Simultaneous adsorption of Cu
    Zekavat SR; Raouf F; Talesh SSA
    Water Sci Technol; 2020 Nov; 82(9):1808-1824. PubMed ID: 33201845
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Liquid Phase adsorption kinetics and equilibrium of toluene by novel modified-diatomite.
    Sheshdeh RK; Abbasizadeh S; Nikou MR; Badii K; Sharafi MS
    J Environ Health Sci Eng; 2014; 12(1):148. PubMed ID: 25614826
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Biosorption of hexavalent chromium from aqueous solution by polyethyleneimine-modified ultrasonic-assisted acid hydrochar from Sargassum horneri.
    Wang J; Xie Q; Li A; Liu X; Yu F; Ji J
    Water Sci Technol; 2020 Mar; 81(6):1114-1129. PubMed ID: 32597399
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.