BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 31746823)

  • 21. Microfluidic approaches for cancer cell detection, characterization, and separation.
    Chen J; Li J; Sun Y
    Lab Chip; 2012 Apr; 12(10):1753-67. PubMed ID: 22437479
    [TBL] [Abstract][Full Text] [Related]  

  • 22. EpCAM-independent capture of circulating tumor cells with a 'universal CTC-chip'.
    Chikaishi Y; Yoneda K; Ohnaga T; Tanaka F
    Oncol Rep; 2017 Jan; 37(1):77-82. PubMed ID: 27840987
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Electrical fingerprinting, 3D profiling and detection of tumor cells with solid-state micropores.
    Asghar W; Wan Y; Ilyas A; Bachoo R; Kim YT; Iqbal SM
    Lab Chip; 2012 Jul; 12(13):2345-52. PubMed ID: 22549275
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microfluidic-Based Enrichment and Retrieval of Circulating Tumor Cells for RT-PCR Analysis.
    Gogoi P; Sepehri S; Chow W; Handique K; Wang Y
    Methods Mol Biol; 2017; 1634():55-64. PubMed ID: 28819840
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Affinity separation and subsequent terminal differentiation of acute myeloid leukemia cells using the human transferrin receptor (CD71) as a capture target.
    Lyons VJ; Pappas D
    Analyst; 2019 May; 144(10):3369-3380. PubMed ID: 30984961
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Negative enrichment of target cells by microfluidic affinity chromatography.
    Li P; Gao Y; Pappas D
    Anal Chem; 2011 Oct; 83(20):7863-9. PubMed ID: 21939198
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Single-Cell Isolation of Circulating Tumor Cells from Whole Blood by Lateral Magnetophoretic Microseparation and Microfluidic Dispensing.
    Kim J; Cho H; Han SI; Han KH
    Anal Chem; 2016 May; 88(9):4857-63. PubMed ID: 27093098
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparison of Chip Inlet Geometry in Microfluidic Devices for Cell Studies.
    Sun YS
    Molecules; 2016 Jun; 21(6):. PubMed ID: 27314318
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Microfluidic technologies.
    Bhagat AA; Lim CT
    Recent Results Cancer Res; 2012; 195():59-67. PubMed ID: 22527494
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Adhesion based detection, sorting and enrichment of cells in microfluidic Lab-on-Chip devices.
    Didar TF; Tabrizian M
    Lab Chip; 2010 Nov; 10(22):3043-53. PubMed ID: 20877893
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Gelatin Nanoparticle-Coated Silicon Beads for Density-Selective Capture and Release of Heterogeneous Circulating Tumor Cells with High Purity.
    Huang Q; Wang FB; Yuan CH; He Z; Rao L; Cai B; Chen B; Jiang S; Li Z; Chen J; Liu W; Guo F; Ao Z; Chen S; Zhao XZ
    Theranostics; 2018; 8(6):1624-1635. PubMed ID: 29556345
    [No Abstract]   [Full Text] [Related]  

  • 32. A microfluidic immunosensor for visual detection of foodborne bacteria using immunomagnetic separation, enzymatic catalysis and distance indication.
    Cai G; Zheng L; Liao M; Li Y; Wang M; Liu N; Lin J
    Mikrochim Acta; 2019 Nov; 186(12):757. PubMed ID: 31707541
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Rhipsalis (Cactaceae)-like Hierarchical Structure Based Microfluidic Chip for Highly Efficient Isolation of Rare Cancer Cells.
    Yan S; Zhang X; Dai X; Feng X; Du W; Liu BF
    ACS Appl Mater Interfaces; 2016 Dec; 8(49):33457-33463. PubMed ID: 27960420
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Microfluidic cell surface antigen expression analysis using a single antibody type.
    Zhang Y; Pappas D
    Analyst; 2016 Feb; 141(4):1440-7. PubMed ID: 26814637
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Polymeric microfluidic devices exhibiting sufficient capture of cancer cell line for isolation of circulating tumor cells.
    Ohnaga T; Shimada Y; Moriyama M; Kishi H; Obata T; Takata K; Okumura T; Nagata T; Muraguchi A; Tsukada K
    Biomed Microdevices; 2013 Aug; 15(4):611-616. PubMed ID: 23666489
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Size-selective collection of circulating tumor cells using Vortex technology.
    Sollier E; Go DE; Che J; Gossett DR; O'Byrne S; Weaver WM; Kummer N; Rettig M; Goldman J; Nickols N; McCloskey S; Kulkarni RP; Di Carlo D
    Lab Chip; 2014 Jan; 14(1):63-77. PubMed ID: 24061411
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Enrichment of cancer cells using aptamers immobilized on a microfluidic channel.
    Phillips JA; Xu Y; Xia Z; Fan ZH; Tan W
    Anal Chem; 2009 Feb; 81(3):1033-9. PubMed ID: 19115856
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Deformability and size-based cancer cell separation using an integrated microfluidic device.
    Pang L; Shen S; Ma C; Ma T; Zhang R; Tian C; Zhao L; Liu W; Wang J
    Analyst; 2015 Nov; 140(21):7335-46. PubMed ID: 26366443
    [TBL] [Abstract][Full Text] [Related]  

  • 39. SSA-MOA: a novel CTC isolation platform using selective size amplification (SSA) and a multi-obstacle architecture (MOA) filter.
    Kim MS; Sim TS; Kim YJ; Kim SS; Jeong H; Park JM; Moon HS; Kim SI; Gurel O; Lee SS; Lee JG; Park JC
    Lab Chip; 2012 Aug; 12(16):2874-80. PubMed ID: 22684249
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Full on-chip nanoliter immunoassay by geometrical magnetic trapping of nanoparticle chains.
    Lacharme F; Vandevyver C; Gijs MA
    Anal Chem; 2008 Apr; 80(8):2905-10. PubMed ID: 18348542
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.