These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 31746856)

  • 1. Visible-light unmasking of heterocyclic quinone methide radicals from alkoxyamines.
    Kielty P; Farràs P; McArdle P; Smith DA; Aldabbagh F
    Chem Commun (Camb); 2019 Dec; 55(97):14665-14668. PubMed ID: 31746856
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Correction: Visible-light unmasking of heterocyclic quinone methide radicals from alkoxyamines.
    Kielty P; Farràs P; McArdle P; Smith DA; Aldabbagh F
    Chem Commun (Camb); 2020 Oct; 56(79):11891. PubMed ID: 32969438
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Light-Sensitive Alkoxyamines as Versatile Spatially- and Temporally- Controlled Precursors of Alkyl Radicals and Nitroxides.
    Baron M; Morris JC; Telitel S; Clément JL; Lalevée J; Morlet-Savary F; Spangenberg A; Malval JP; Soppera O; Gigmes D; Guillaneuf Y
    J Am Chem Soc; 2018 Mar; 140(9):3339-3344. PubMed ID: 29432001
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Smart Alkoxyamines: A New Tool for Smart Applications.
    Audran G; Marque SRA; Mellet P
    Acc Chem Res; 2020 Dec; 53(12):2828-2840. PubMed ID: 33172268
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alkoxyamines: a new family of pro-drugs against cancer. Concept for theranostics.
    Audran G; Brémond P; Franconi JM; Marque SR; Massot P; Mellet P; Parzy E; Thiaudière E
    Org Biomol Chem; 2014 Feb; 12(5):719-23. PubMed ID: 24337356
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tin-free radical alkoxyamine addition and isomerization reactions by using the persistent radical effect: variation of the alkoxyamine structure.
    Molawi K; Schulte T; Siegenthaler KO; Wetter C; Studer A
    Chemistry; 2005 Apr; 11(8):2335-50. PubMed ID: 15696581
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Importance of the position of the chromophore group on the dissociation process of light sensitive alkoxyamines.
    Guillaneuf Y; Versace DL; Bertin D; Lalevée J; Gigmes D; Fouassier JP
    Macromol Rapid Commun; 2010 Nov; 31(21):1909-13. PubMed ID: 21567612
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flash photolytic generation and study of p-quinone methide in aqueous solution. An estimate of rate and equilibrium constants for heterolysis of the carbon-bromine bond in p-hydroxybenzyl bromide.
    Chiang Y; Kresge AJ; Zhu Y
    J Am Chem Soc; 2002 Jun; 124(22):6349-56. PubMed ID: 12033864
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Substituent effects on carbocation stability: the pK(R) for p-quinone methide.
    Toteva MM; Moran M; Amyes TL; Richard JP
    J Am Chem Soc; 2003 Jul; 125(29):8814-9. PubMed ID: 12862476
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Factors influencing C-ON bond homolysis in alkoxyamines: unexpected behavior of SG1 (N-(2-methyl-2-propyl)- N-(1-diethylphosphono-2,2-dimethylpropyl)-N-oxyl)-based alkoxyamines.
    Bertin D; Gigmes D; Le Mercier C; Marque SR; Tordo P
    J Org Chem; 2004 Jul; 69(15):4925-30. PubMed ID: 15255717
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Trapping phosphodiester-quinone methide adducts through in situ lactonization.
    Zhou Q; Turnbull KD
    J Org Chem; 2000 Apr; 65(7):2022-9. PubMed ID: 10774022
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Peptide-Alkoxyamine Drugs: An Innovative Approach to Fight Schistosomiasis: "Digging Their Graves with Their Forks".
    Embo-Ibouanga AW; Nguyen M; Joly JP; Coustets M; Augereau JM; Paloque L; Vanthuyne N; Bikanga R; Robert A; Benoit-Vical F; Audran G; Mellet P; Boissier J; Marque SRA
    Pathogens; 2024 Jun; 13(6):. PubMed ID: 38921780
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A pulse radiolysis investigation of the oxidation of methoxylated metabolites of indolic melanin precursors.
    Lambert C; Land EJ; Riley PA; Truscott TG
    Biochim Biophys Acta; 1990 Sep; 1035(3):319-24. PubMed ID: 2207127
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theoretical study of the photochemical initiation in nitroxide-mediated photopolymerization.
    Huix-Rotllant M; Ferré N
    J Phys Chem A; 2014 Jun; 118(25):4464-70. PubMed ID: 24922558
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural effects on the photodissociation of alkoxyamines.
    Versace DL; Guillaneuf Y; Bertin D; Fouassier JP; Lalevée J; Gigmes D
    Org Biomol Chem; 2011 Apr; 9(8):2892-8. PubMed ID: 21373661
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure-activity study on the quinone/quinone methide chemistry of flavonoids.
    Awad HM; Boersma MG; Boeren S; van Bladeren PJ; Vervoort J; Rietjens IM
    Chem Res Toxicol; 2001 Apr; 14(4):398-408. PubMed ID: 11304128
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 4-Hydroxylated metabolites of the antiestrogens tamoxifen and toremifene are metabolized to unusually stable quinone methides.
    Fan PW; Zhang F; Bolton JL
    Chem Res Toxicol; 2000 Jan; 13(1):45-52. PubMed ID: 10649966
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioactivation of tamoxifen to metabolite E quinone methide: reaction with glutathione and DNA.
    Fan PW; Bolton JL
    Drug Metab Dispos; 2001 Jun; 29(6):891-6. PubMed ID: 11353759
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of mitochondrial respiration by a para-quinone methide.
    Thompson DC; Perera K
    Biochem Biophys Res Commun; 1995 Apr; 209(1):6-11. PubMed ID: 7726864
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxidation of eugenol to form DNA adducts and 8-hydroxy-2'-deoxyguanosine: role of quinone methide derivative in DNA adduct formation.
    Bodell WJ; Ye Q; Pathak DN; Pongracz K
    Carcinogenesis; 1998 Mar; 19(3):437-43. PubMed ID: 9525278
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.