These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 31747042)
1. Chemogenetic modulation of the parafacial respiratory group influences the recruitment of abdominal activity during REM sleep. Pisanski A; Ding X; Koch NA; Pagliardini S Sleep; 2020 May; 43(5):. PubMed ID: 31747042 [TBL] [Abstract][Full Text] [Related]
2. Cholinergic modulation of the parafacial respiratory group. Boutin RC; Alsahafi Z; Pagliardini S J Physiol; 2017 Feb; 595(4):1377-1392. PubMed ID: 27808424 [TBL] [Abstract][Full Text] [Related]
3. Expiratory activation of abdominal muscle is associated with improved respiratory stability and an increase in minute ventilation in REM epochs of adult rats. Andrews CG; Pagliardini S J Appl Physiol (1985); 2015 Nov; 119(9):968-74. PubMed ID: 26338455 [TBL] [Abstract][Full Text] [Related]
4. The parafacial respiratory group and the control of active expiration. Pisanski A; Pagliardini S Respir Physiol Neurobiol; 2019 Jul; 265():153-160. PubMed ID: 29933053 [TBL] [Abstract][Full Text] [Related]
5. Non-chemosensitive parafacial neurons simultaneously regulate active expiration and airway patency under hypercapnia in rats. de Britto AA; Moraes DJ J Physiol; 2017 Mar; 595(6):2043-2064. PubMed ID: 28004411 [TBL] [Abstract][Full Text] [Related]
6. Active expiration induced by excitation of ventral medulla in adult anesthetized rats. Pagliardini S; Janczewski WA; Tan W; Dickson CT; Deisseroth K; Feldman JL J Neurosci; 2011 Feb; 31(8):2895-905. PubMed ID: 21414911 [TBL] [Abstract][Full Text] [Related]
7. Breathing During Sleep in the Postnatal Period of Rats: The Contribution of Active Expiration. Saini JK; Pagliardini S Sleep; 2017 Dec; 40(12):. PubMed ID: 29294135 [TBL] [Abstract][Full Text] [Related]
8. Active expiratory oscillator regulates nasofacial and oral motor activities in rats. de Britto AA; Magalhães KS; da Silva MP; Paton JFR; Moraes DJA Exp Physiol; 2020 Feb; 105(2):379-392. PubMed ID: 31820827 [TBL] [Abstract][Full Text] [Related]
9. Generation of active expiration by serotoninergic mechanisms of the ventral medulla of rats. Lemes EV; Colombari E; Zoccal DB J Appl Physiol (1985); 2016 Nov; 121(5):1135-1144. PubMed ID: 27660299 [TBL] [Abstract][Full Text] [Related]
10. Hypercapnia-induced active expiration increases in sleep and enhances ventilation in unanaesthetized rats. Leirão IP; Silva CA; Gargaglioni LH; da Silva GSF J Physiol; 2018 Aug; 596(15):3271-3283. PubMed ID: 28776683 [TBL] [Abstract][Full Text] [Related]
11. Inhibitory control of active expiration by the Bötzinger complex in rats. Flor KC; Barnett WH; Karlen-Amarante M; Molkov YI; Zoccal DB J Physiol; 2020 Nov; 598(21):4969-4994. PubMed ID: 32621515 [TBL] [Abstract][Full Text] [Related]
12. Circadian rhythms and sleep have additive effects on respiration in the rat. Stephenson R; Liao KS; Hamrahi H; Horner RL J Physiol; 2001 Oct; 536(Pt 1):225-35. PubMed ID: 11579171 [TBL] [Abstract][Full Text] [Related]
13. Cardiovascular and respiratory profiles during the sleep-wake cycle of rats previously submitted to chronic intermittent hypoxia. Bazilio DS; Bonagamba LGH; Moraes DJA; Machado BH Exp Physiol; 2019 Sep; 104(9):1408-1419. PubMed ID: 31099915 [TBL] [Abstract][Full Text] [Related]
14. Interaction between the retrotrapezoid nucleus and the parafacial respiratory group to regulate active expiration and sympathetic activity in rats. Zoccal DB; Silva JN; Barnett WH; Lemes EV; Falquetto B; Colombari E; Molkov YI; Moreira TS; Takakura AC Am J Physiol Lung Cell Mol Physiol; 2018 Nov; 315(5):L891-L909. PubMed ID: 30188747 [TBL] [Abstract][Full Text] [Related]
15. Differential modulation of active expiration during hypercapnia by the medullary raphe in unanesthetized rats. Leirão IP; Zoccal DB; Gargaglioni LH; da Silva GSF Pflugers Arch; 2020 Nov; 472(11):1563-1576. PubMed ID: 32914212 [TBL] [Abstract][Full Text] [Related]
16. GABAergic neurons of the medullary raphe regulate active expiration during hypercapnia. Silva JDN; Oliveira LM; Souza FC; Moreira TS; Takakura AC J Neurophysiol; 2020 May; 123(5):1933-1943. PubMed ID: 32267190 [TBL] [Abstract][Full Text] [Related]
17. Mapping of the excitatory, inhibitory, and modulatory afferent projections to the anatomically defined active expiratory oscillator in adult male rats. Biancardi V; Saini J; Pageni A; Prashaad M H; Funk GD; Pagliardini S J Comp Neurol; 2021 Mar; 529(4):853-884. PubMed ID: 32656849 [TBL] [Abstract][Full Text] [Related]
18. The pontine Kölliker-Fuse nucleus is important for reduced postinspiratory airflow elicited by stimulation of the ventral respiratory parafacial region. Flor KC; Maia OAC; Takakura AC; Moreira TS Am J Physiol Lung Cell Mol Physiol; 2024 Oct; 327(4):L452-L463. PubMed ID: 39104318 [TBL] [Abstract][Full Text] [Related]
19. Mapping responses to focal injections of bicuculline in the lateral parafacial region identifies core regions for maximal generation of active expiration. Pisanski A; Prostebby M; Dickson CT; Pagliardini S Elife; 2024 Jul; 13():. PubMed ID: 39017665 [TBL] [Abstract][Full Text] [Related]
20. K(ATP) channels of parafacial respiratory group (pFRG) neurons are involved in H2S-mediated central inhibition of respiratory rhythm in medullary slices of neonatal rats. Chen L; Zhang J; Ding Y; Li H; Nie L; Yan X; Zhou H; Zheng Y Brain Res; 2013 Aug; 1527():141-8. PubMed ID: 23850648 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]