BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 31747259)

  • 1. Gold Triangular Nanoplates Based Single-Particle Dark-Field Microscopy Assay of Pyrophosphate.
    Gu XY; Liu JJ; Gao PF; Li YF; Huang CZ
    Anal Chem; 2019 Dec; 91(24):15798-15803. PubMed ID: 31747259
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sequential colorimetric sensing of cupric and mercuric ions by regulating the etching process of triangular gold nanoplates.
    Wang Q; Peng R; Wang Y; Zhu S; Yan X; Lei Y; Sun Y; He H; Luo L
    Mikrochim Acta; 2020 Mar; 187(4):205. PubMed ID: 32152683
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Iodine-Mediated Etching of Triangular Gold Nanoplates for Colorimetric Sensing of Copper Ion and Aptasensing of Chloramphenicol.
    Chang CC; Wang G; Takarada T; Maeda M
    ACS Appl Mater Interfaces; 2017 Oct; 9(39):34518-34525. PubMed ID: 28910068
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Color-Coded Single-Particle Pyrophosphate Assay with Dark-Field Optical Microscopy.
    Qi F; Han Y; Ye Z; Liu H; Wei L; Xiao L
    Anal Chem; 2018 Sep; 90(18):11146-11153. PubMed ID: 30114901
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Iodide-assisted silver nanoplates for colorimetric determination of chromium(III) and copper(II) via an aggregation/fusion/oxidation etching strategy.
    Wang Z; Lu Y; Pang J; Sun J; Yang F; Li H; Liu Y
    Mikrochim Acta; 2019 Dec; 187(1):19. PubMed ID: 31807940
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Visual detection of different metal ions based on the tug of war between triangular Au nanoparticles and metal ions against mercaptans.
    Chen X; Liang Y
    Anal Methods; 2021 Jan; 13(2):227-231. PubMed ID: 33346752
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Colorimetric sensing of Cu(II) ions in water on the basis of selective chemical etching of EDA-capped Ag nanoplates.
    Kim J; Shim H; Kim YS; Kim MH
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 Sep; 297():122750. PubMed ID: 37104909
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gap-Mode Tip-Enhanced Raman Scattering on Au Nanoplates of Varied Thickness.
    Wang R; He Z; Sokolov AV; Kurouski D
    J Phys Chem Lett; 2020 May; 11(10):3815-3820. PubMed ID: 32340446
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Silver nanoplates-based colorimetric iodide recognition and sensing using sodium thiosulfate as a sensitizer.
    Hou X; Chen S; Tang J; Xiong Y; Long Y
    Anal Chim Acta; 2014 May; 825():57-62. PubMed ID: 24767151
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reshaping of triangular silver nanoplates by a non-halide etchant and its application in melamine sensing.
    Ardianrama AD; Wijaya YN; Hur SH; Woo HC; Kim MH
    J Colloid Interface Sci; 2019 Sep; 552():485-493. PubMed ID: 31152964
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dark-field microscopy in imaging of plasmon resonant nanoparticles.
    Liu M; Chao J; Deng S; Wang K; Li K; Fan C
    Colloids Surf B Biointerfaces; 2014 Dec; 124():111-7. PubMed ID: 25009105
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-yield seedless synthesis of triangular gold nanoplates through oxidative etching.
    Chen L; Ji F; Xu Y; He L; Mi Y; Bao F; Sun B; Zhang X; Zhang Q
    Nano Lett; 2014 Dec; 14(12):7201-6. PubMed ID: 25412030
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel Strategy for One-Pot Synthesis of Gold Nanoplates on Carbon Nanotube Sheet As an Effective Flexible SERS Substrate.
    Xin W; Yang JM; Li C; Goorsky MS; Carlson L; De Rosa IM
    ACS Appl Mater Interfaces; 2017 Feb; 9(7):6246-6254. PubMed ID: 28106364
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intracellular dark-field imaging of ATP and photothermal therapy using a colorimetric assay based on gold nanoparticle aggregation via tetrazine/trans-cyclooctene cycloaddition.
    Liu F; Guo Y; Hu Y; Zhang X; Zheng X
    Anal Bioanal Chem; 2019 Sep; 411(22):5845-5854. PubMed ID: 31278549
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gold Nanoplates for a Localized Surface Plasmon Resonance-Based Boric Acid Sensor.
    Morsin M; Mat Salleh M; Ali Umar A; Sahdan MZ
    Sensors (Basel); 2017 Apr; 17(5):. PubMed ID: 28441323
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strain-Induced Modulation of Localized Surface Plasmon Resonance in Ultrathin Hexagonal Gold Nanoplates.
    Park GS; Min KS; Kwon H; Yoon S; Park S; Kwon JH; Lee S; Jo J; Kim M; Kim SK
    Adv Mater; 2021 Sep; 33(38):e2100653. PubMed ID: 34338357
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A localized surface plasmon resonance light-scattering assay of mercury (II) on the basis of Hg(2+)-DNA complex induced aggregation of gold nanoparticles.
    Liu ZD; Li YF; Ling J; Huang CZ
    Environ Sci Technol; 2009 Jul; 43(13):5022-7. PubMed ID: 19673301
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Facile Synthesis of Enhanced Fluorescent Gold-Silver Bimetallic Nanocluster and Its Application for Highly Sensitive Detection of Inorganic Pyrophosphatase Activity.
    Zhou Q; Lin Y; Xu M; Gao Z; Yang H; Tang D
    Anal Chem; 2016 Sep; 88(17):8886-92. PubMed ID: 27476555
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasmonic scattering imaging of single Cu
    Zou H; Gong L; Xu Y; Ni H; Jiang Y; Li Y; Huang C; Liu Q
    Talanta; 2023 Aug; 261():124663. PubMed ID: 37209587
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasmonic spectral determination of Hg(II) based on surface etching of Au-Ag core-shell triangular nanoplates: From spectrum peak to dip.
    Zhu J; Jia TT; Li JJ; Li X; Zhao JW
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Jan; 207():337-347. PubMed ID: 30267978
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.