These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 31747260)

  • 1. Sensing and Approaching Toxic Arsenate by
    Cheng L; Min D; Liu DF; Li WW; Yu HQ
    Environ Sci Technol; 2019 Dec; 53(24):14604-14611. PubMed ID: 31747260
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The cymA gene, encoding a tetraheme c-type cytochrome, is required for arsenate respiration in Shewanella species.
    Murphy JN; Saltikov CW
    J Bacteriol; 2007 Mar; 189(6):2283-90. PubMed ID: 17209025
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single Strain-Triggered Biogeochemical Cycle of Arsenic.
    Min D; Cheng L; Liu DF; Liu JQ; Li WW; Yu HQ
    Environ Sci Technol; 2022 Nov; 56(22):16410-16418. PubMed ID: 36268776
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shewanella sp. O23S as a Driving Agent of a System Utilizing Dissimilatory Arsenate-Reducing Bacteria Responsible for Self-Cleaning of Water Contaminated with Arsenic.
    Drewniak L; Stasiuk R; Uhrynowski W; Sklodowska A
    Int J Mol Sci; 2015 Jun; 16(7):14409-27. PubMed ID: 26121297
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of arsenate adsorption to ferrihydrite, goethite, and boehmite on the kinetics of arsenate reduction by Shewanella putrefaciens strain CN-32.
    Huang JH; Voegelin A; Pombo SA; Lazzaro A; Zeyer J; Kretzschmar R
    Environ Sci Technol; 2011 Sep; 45(18):7701-9. PubMed ID: 21819067
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural and mechanistic analysis of the arsenate respiratory reductase provides insight into environmental arsenic transformations.
    Glasser NR; Oyala PH; Osborne TH; Santini JM; Newman DK
    Proc Natl Acad Sci U S A; 2018 Sep; 115(37):E8614-E8623. PubMed ID: 30104376
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Organoarsenical Biotransformations by Shewanella putrefaciens.
    Chen J; Rosen BP
    Environ Sci Technol; 2016 Aug; 50(15):7956-63. PubMed ID: 27366920
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential arsenic mobilization from As-bearing ferrihydrite by iron-respiring Shewanella strains with different arsenic-reducing activities.
    Jiang S; Lee JH; Kim D; Kanaly RA; Kim MG; Hur HG
    Environ Sci Technol; 2013 Aug; 47(15):8616-23. PubMed ID: 23802758
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unveiling the chemotactic response and mechanism of Shewanella oneidensis MR-1 to nitrobenzene.
    Li Y; Liu K; Mao R; Liu B; Cheng L; Shi X
    J Hazard Mater; 2022 Jun; 431():128629. PubMed ID: 35278967
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterising microbial reduction of arsenate sorbed to ferrihydrite and its concurrence with iron reduction.
    Huang JH
    Chemosphere; 2018 Mar; 194():49-56. PubMed ID: 29197249
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Redox Sensing within the Genus
    Harris HW; Sánchez-Andrea I; McLean JS; Salas EC; Tran W; El-Naggar MY; Nealson KH
    Front Microbiol; 2017; 8():2568. PubMed ID: 29422884
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anaerobic electron acceptor chemotaxis in Shewanella putrefaciens.
    Nealson KH; Moser DP; Saffarini DA
    Appl Environ Microbiol; 1995 Apr; 61(4):1551-4. PubMed ID: 11536689
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unexpected chemoreceptors mediate energy taxis towards electron acceptors in Shewanella oneidensis.
    Baraquet C; Théraulaz L; Iobbi-Nivol C; Méjean V; Jourlin-Castelli C
    Mol Microbiol; 2009 Jul; 73(2):278-90. PubMed ID: 19555457
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of clay minerals on sorption and bioreduction of arsenic under anoxic conditions.
    Ghorbanzadeh N; Lakzian A; Halajnia A; Kabra AN; Kurade MB; Lee DS; Jeon BH
    Environ Geochem Health; 2015 Dec; 37(6):997-1005. PubMed ID: 25971375
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proteomic assessment of the role of N-acyl homoserine lactone in Shewanella putrefaciens spoilage.
    Zhang C; Zhu S; Jatt AN; Pan Y; Zeng M
    Lett Appl Microbiol; 2017 Nov; 65(5):388-394. PubMed ID: 28833381
    [TBL] [Abstract][Full Text] [Related]  

  • 16. FlrA Represses Transcription of the Biofilm-Associated bpfA Operon in Shewanella putrefaciens.
    Cheng YY; Wu C; Wu JY; Jia HL; Wang MY; Wang HY; Zou SM; Sun RR; Jia R; Xiao YZ
    Appl Environ Microbiol; 2017 Feb; 83(4):. PubMed ID: 27986717
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel arsenate reductase from the bacterium Thermus thermophilus HB27: its role in arsenic detoxification.
    Del Giudice I; Limauro D; Pedone E; Bartolucci S; Fiorentino G
    Biochim Biophys Acta; 2013 Oct; 1834(10):2071-9. PubMed ID: 23800470
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimization of cadmium biosorption by Shewanella putrefaciens using a Box-Behnken design.
    Yuan W; Cheng J; Huang H; Xiong S; Gao J; Zhang J; Feng S
    Ecotoxicol Environ Saf; 2019 Jul; 175():138-147. PubMed ID: 30897412
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel MAs(III)-selective ArsR transcriptional repressor.
    Chen J; Nadar VS; Rosen BP
    Mol Microbiol; 2017 Nov; 106(3):469-478. PubMed ID: 28861914
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genomic Analysis of
    Uhrynowski W; Radlinska M; Drewniak L
    Int J Mol Sci; 2019 Feb; 20(5):. PubMed ID: 30813619
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.