These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 31747292)

  • 21. A copper(I)-catalyzed reaction of 2-(2-ethynylphenyl)oxirane, sulfonyl azide, with 2-isocyanoacetate.
    Li S; Wu J
    Chem Commun (Camb); 2012 Sep; 48(71):8973-5. PubMed ID: 22842650
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Synthesis of N-Sulfonyl Amidines and Acyl Sulfonyl Ureas from Sulfonyl Azides, Carbon Monoxide, and Amides.
    Chow SY; Odell LR
    J Org Chem; 2017 Mar; 82(5):2515-2522. PubMed ID: 28150496
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fast and Facile Synthesis of 4-Nitrophenyl 2-Azidoethylcarbamate Derivatives from N-Fmoc-Protected α-Amino Acids as Activated Building Blocks for Urea Moiety-Containing Compound Library.
    Chen YY; Chang LT; Chen HW; Yang CY; Hsin LW
    ACS Comb Sci; 2017 Mar; 19(3):131-136. PubMed ID: 28055180
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Highly efficient coupling of beta-substituted aminoethane sulfonyl azides with thio acids, toward a new chemical ligation reaction.
    Merkx R; Brouwer AJ; Rijkers DT; Liskamp RM
    Org Lett; 2005 Mar; 7(6):1125-8. PubMed ID: 15760155
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Site-Selective Synthesis of Insulin Azides and Bioconjugates.
    Boga SB; Krska SW; Lin S; Pissarnitski D; Yan L; Kekec A; Tang W; Pierson NA; Strulson CA; Streckfuss E; Zhu X; Zhang X; Kelly T; Parish CA
    Bioconjug Chem; 2019 Apr; 30(4):1127-1132. PubMed ID: 30946565
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electrochemically Induced Synthesis of Imidazoles from Vinyl Azides and Benzyl Amines.
    Vil' VA; Grishin SS; Terent'ev AO
    Molecules; 2022 Nov; 27(22):. PubMed ID: 36431821
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Translation of DNA into a library of 13,000 synthetic small-molecule macrocycles suitable for in vitro selection.
    Tse BN; Snyder TM; Shen Y; Liu DR
    J Am Chem Soc; 2008 Nov; 130(46):15611-26. PubMed ID: 18956864
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Solution Phase Platform to Characterize Chemical Reaction Compatibility with DNA-Encoded Chemical Library Synthesis.
    Ratnayake AS; Flanagan ME; Foley TL; Smith JD; Johnson JG; Bellenger J; Montgomery JI; Paegel BM
    ACS Comb Sci; 2019 Oct; 21(10):650-655. PubMed ID: 31425646
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Quantitative Comparison of Enrichment from DNA-Encoded Chemical Library Selections.
    Faver JC; Riehle K; Lancia DR; Milbank JBJ; Kollmann CS; Simmons N; Yu Z; Matzuk MM
    ACS Comb Sci; 2019 Feb; 21(2):75-82. PubMed ID: 30672692
    [TBL] [Abstract][Full Text] [Related]  

  • 30. One-pot procedure for diazo transfer and azide-alkyne cycloaddition: triazole linkages from amines.
    Beckmann HS; Wittmann V
    Org Lett; 2007 Jan; 9(1):1-4. PubMed ID: 17192070
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Efficient amidation from carboxylic acids and azides via selenocarboxylates: application to the coupling of amino acids and peptides with azides.
    Wu X; Hu L
    J Org Chem; 2007 Feb; 72(3):765-74. PubMed ID: 17253793
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The Evolution of DNA-Templated Synthesis as a Tool for Materials Discovery.
    O'Reilly RK; Turberfield AJ; Wilks TR
    Acc Chem Res; 2017 Oct; 50(10):2496-2509. PubMed ID: 28915003
    [TBL] [Abstract][Full Text] [Related]  

  • 33. DNA-Compatible Cyclization Reaction to Access 1,3,4-Oxadiazoles and 1,2,4-Triazoles.
    Wang G; Tan Y; Zou H; Sui X; Wang Z; Satz AL; Kuai L; Su W; Zhang Q
    Org Lett; 2024 Feb; 26(7):1353-1357. PubMed ID: 38335275
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Employing Photoredox Catalysis for DNA-Encoded Chemistry: Decarboxylative Alkylation of α-Amino Acids.
    Kölmel DK; Loach RP; Knauber T; Flanagan ME
    ChemMedChem; 2018 Oct; 13(20):2159-2165. PubMed ID: 30063289
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Achievements, Challenges, and Opportunities in DNA-Encoded Library Research: An Academic Point of View.
    Yuen LH; Franzini RM
    Chembiochem; 2017 May; 18(9):829-836. PubMed ID: 28032411
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Drug discovery with DNA-encoded chemical libraries.
    Buller F; Mannocci L; Scheuermann J; Neri D
    Bioconjug Chem; 2010 Sep; 21(9):1571-80. PubMed ID: 20681509
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A 'sulfonyl-azide-free' (SAFE) aqueous-phase diazo transfer reaction for parallel and diversity-oriented synthesis.
    Dar'in D; Kantin G; Krasavin M
    Chem Commun (Camb); 2019 May; 55(36):5239-5242. PubMed ID: 30985842
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Large screening of DNA-compatible reaction conditions for Suzuki and Sonogashira cross-coupling reactions and for reverse amide bond formation.
    Favalli N; Bassi G; Bianchi D; Scheuermann J; Neri D
    Bioorg Med Chem; 2021 Jul; 41():116206. PubMed ID: 34038862
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Three-component reaction of N'-(2-alkynylbenzylidene)hydrazide, alkyne, with sulfonyl azide via a multicatalytic process: a novel and concise approach to 2-amino-H-pyrazolo[5,1-a]isoquinolines.
    Li S; Luo Y; Wu J
    Org Lett; 2011 Aug; 13(16):4312-5. PubMed ID: 21790168
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Heterogeneous diazo-transfer reaction: a facile unmasking of azide groups on amine-functionalized insoluble supports for solid-phase synthesis.
    Oyelere AK; Chen PC; Yao LP; Boguslavsky N
    J Org Chem; 2006 Dec; 71(26):9791-6. PubMed ID: 17168598
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.