BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 3174731)

  • 1. Opposite effects induced by low and high doses of apomorphine on single-trial passive avoidance learning in mice.
    Ichihara K; Nabeshima T; Kameyama T
    Pharmacol Biochem Behav; 1988 May; 30(1):107-13. PubMed ID: 3174731
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The disruptive effects of ketamine on passive avoidance learning in mice: involvement of dopaminergic mechanism.
    Uchihashi Y; Kuribara H; Isa Y; Morita T; Sato T
    Psychopharmacology (Berl); 1994 Sep; 116(1):40-4. PubMed ID: 7862929
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effects of apomorphine and haloperidol on memory consolidation in the day-old chick.
    Hale MW; Crowe SF
    Behav Neurosci; 2001 Apr; 115(2):376-83. PubMed ID: 11345962
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of haloperidol, sulpiride and SCH 23390 on passive avoidance learning in mice.
    Ichihara K; Nabeshima T; Kameyama T
    Eur J Pharmacol; 1988 Jul; 151(3):435-42. PubMed ID: 3063548
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impairment by apomorphine of one-trial passive avoidance learning in mice: the opposing roles of the dopamine and noradrenaline systems.
    Fernandez-Tome MP; Sanchez-Blazquez P; del Rio J
    Psychopharmacology (Berl); 1979 Mar; 61(1):43-7. PubMed ID: 35807
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Opposite strain-dependent effects of post-training corticosterone in a passive avoidance task in mice: role of dopamine.
    Cabib S; Castellano C; Patacchioli FR; Cigliana G; Angelucci L; Puglisi-Allegra S
    Brain Res; 1996 Aug; 729(1):110-8. PubMed ID: 8874882
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Involvement of activation of dopaminergic neuronal system in learning and memory deficits associated with experimental mild traumatic brain injury.
    Tang YP; Noda Y; Nabeshima T
    Eur J Neurosci; 1997 Aug; 9(8):1720-7. PubMed ID: 9283826
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Participation of angiotensin II in learning and memory. II. Interactions of angiotensin II with dopaminergic drugs.
    Yonkov DI; Georgiev VP; Opitz MJ
    Methods Find Exp Clin Pharmacol; 1986 Apr; 8(4):203-6. PubMed ID: 3724295
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of morphine- or apomorphine-induced sensitization on histamine state-dependent learning in the step-down passive avoidance test.
    Zarrindast MR; Khalilzadeh A; Malekmohammadi N; Fazli-Tabaei S
    Behav Brain Res; 2006 Jul; 171(1):50-5. PubMed ID: 16677725
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effects of neurosteroids on acquisition and retention of a modified passive-avoidance learning task in mice.
    Reddy DS; Kulkarni SK
    Brain Res; 1998 Apr; 791(1-2):108-16. PubMed ID: 9593848
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nefiracetam (DM-9384) reverses apomorphine-induced amnesia of a passive avoidance response: delayed emergence of the memory retention effects.
    Doyle E; O'Boyle KM; Shiotani T; Regan CM
    Neurochem Res; 1996 Jun; 21(6):649-52. PubMed ID: 8829135
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comparative study on the effects of the benzodiazepine midazolam and the dopamine agents, apomorphine and sulpiride, on rat behavior in the two-way avoidance test.
    Carvalho JD; de Oliveira AR; da Silva RC; Brandão ML
    Pharmacol Biochem Behav; 2009 Apr; 92(2):351-6. PubMed ID: 19353757
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calcium channel antagonists enhance retention of passive avoidance and maze learning in mice.
    Quartermain D; deSoria VG; Kwan A
    Neurobiol Learn Mem; 2001 Jan; 75(1):77-90. PubMed ID: 11124048
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of typical and atypical antipsychotic drugs on two-way active avoidance. Relationship to DA receptor blocking profile.
    Ogren SO; Archer T
    Psychopharmacology (Berl); 1994 Apr; 114(3):383-91. PubMed ID: 7855196
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Roxindole: psychopharmacological profile of a dopamine D2 autoreceptor agonist.
    Bartoszyk GD; Harting J; Minck KO
    J Pharmacol Exp Ther; 1996 Jan; 276(1):41-8. PubMed ID: 8558454
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Changes in sensitivity of release modulating dopamine autoreceptors after chronic treatment with haloperidol.
    Nowak JZ; Arbilla S; Galzin AM; Langer SZ
    J Pharmacol Exp Ther; 1983 Aug; 226(2):558-64. PubMed ID: 6875865
    [TBL] [Abstract][Full Text] [Related]  

  • 17. EFFECTS OF VERAPAMIL ON DOPAMINE DEPENDENT BEHAVIOURS IN RATS.
    Malekar AR; Balsara JJ; Gaonkar RK
    Indian J Physiol Pharmacol; 1999 Jan; 43(1):44-52. PubMed ID: 27093735
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dopamine is involved in the different patterns of copulatory behaviour of Roman high and low avoidance rats: studies with apomorphine and haloperidol.
    Sanna F; Piludu MA; Corda MG; Argiolas A; Giorgi O; Melis MR
    Pharmacol Biochem Behav; 2014 Sep; 124():211-9. PubMed ID: 24955864
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Discriminative stimulus properties of cocaine in the rat using a two-choice discrete-trial avoidance paradigm.
    Ukai M; Mori E; Kameyama T
    Pharmacol Biochem Behav; 1993 Apr; 44(4):907-11. PubMed ID: 8097045
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Possible peripheral adrenergic and central dopaminergic influences in memory consolidation.
    Gozzani JL; Izquierdo I
    Psychopharmacology (Berl); 1976 Aug; 49(1):109-11. PubMed ID: 822441
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.