These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
230 related articles for article (PubMed ID: 31747329)
1. Sensorimotor impairment from a new analog of spaceflight-altered neurovestibular cues. Dixon JB; Clark TK J Neurophysiol; 2020 Jan; 123(1):209-223. PubMed ID: 31747329 [TBL] [Abstract][Full Text] [Related]
2. Neurovestibular and sensorimotor studies in space and Earth benefits. Clément G; Reschke M; Wood S Curr Pharm Biotechnol; 2005 Aug; 6(4):267-83. PubMed ID: 16101466 [TBL] [Abstract][Full Text] [Related]
3. Study protocol to examine the effects of spaceflight and a spaceflight analog on neurocognitive performance: extent, longevity, and neural bases. Koppelmans V; Erdeniz B; De Dios YE; Wood SJ; Reuter-Lorenz PA; Kofman I; Bloomberg JJ; Mulavara AP; Seidler RD BMC Neurol; 2013 Dec; 13():205. PubMed ID: 24350728 [TBL] [Abstract][Full Text] [Related]
4. The interplay between strategic and adaptive control mechanisms in plastic recalibration of locomotor function. Richards JT; Mulavara AP; Bloomberg JJ Exp Brain Res; 2007 Apr; 178(3):326-38. PubMed ID: 17061092 [TBL] [Abstract][Full Text] [Related]
5. Perception of tilt (somatogravic illusion) in response to sustained linear acceleration during space flight. Clément G; Moore ST; Raphan T; Cohen B Exp Brain Res; 2001 Jun; 138(4):410-8. PubMed ID: 11465738 [TBL] [Abstract][Full Text] [Related]
6. Physiological and Functional Alterations after Spaceflight and Bed Rest. Mulavara AP; Peters BT; Miller CA; Kofman IS; Reschke MF; Taylor LC; Lawrence EL; Wood SJ; Laurie SS; Lee SMC; Buxton RE; May-Phillips TR; Stenger MB; Ploutz-Snyder LL; Ryder JW; Feiveson AH; Bloomberg JJ Med Sci Sports Exerc; 2018 Sep; 50(9):1961-1980. PubMed ID: 29620686 [TBL] [Abstract][Full Text] [Related]
7. The Effects of Long Duration Spaceflight on Sensorimotor Control and Cognition. Tays GD; Hupfeld KE; McGregor HR; Salazar AP; De Dios YE; Beltran NE; Reuter-Lorenz PA; Kofman IS; Wood SJ; Bloomberg JJ; Mulavara AP; Seidler RD Front Neural Circuits; 2021; 15():723504. PubMed ID: 34764856 [TBL] [Abstract][Full Text] [Related]
9. Critical Role of Somatosensation in Postural Control Following Spaceflight: Vestibularly Deficient Astronauts Are Not Able to Maintain Upright Stance During Compromised Somatosensation. Ozdemir RA; Goel R; Reschke MF; Wood SJ; Paloski WH Front Physiol; 2018; 9():1680. PubMed ID: 30538640 [TBL] [Abstract][Full Text] [Related]
10. Vestibular plasticity following orbital spaceflight: recovery from postflight postural instability. Black FO; Paloski WH; Doxey-Gasway DD; Reschke MF Acta Otolaryngol Suppl; 1995; 520 Pt 2():450-4. PubMed ID: 8749187 [TBL] [Abstract][Full Text] [Related]
11. Recovery of the locomotor function after prolonged microgravity exposure. I. Head-trunk movement and locomotor equilibrium during various tasks. Courtine G; Pozzo T Exp Brain Res; 2004 Sep; 158(1):86-99. PubMed ID: 15164151 [TBL] [Abstract][Full Text] [Related]
12. Vestibular and somatosensory interaction during recovery of balance instability after spaceflight. Hlavacka F; Dzurkova O; Kornilova LN J Gravit Physiol; 2001 Jul; 8(1):P89-92. PubMed ID: 12650187 [TBL] [Abstract][Full Text] [Related]
13. Vestibular brain changes within 70 days of head down bed rest. Yuan P; Koppelmans V; Reuter-Lorenz P; De Dios Y; Gadd N; Wood S; Riascos R; Kofman I; Bloomberg J; Mulavara A; Seidler R Hum Brain Mapp; 2018 Jul; 39(7):2753-2763. PubMed ID: 29528169 [TBL] [Abstract][Full Text] [Related]
14. Perceptual responses to linear acceleration after spaceflight: human neurovestibular studies on SLS-2. Merfeld DM; Polutchko KA; Schultz K J Appl Physiol (1985); 1996 Jul; 81(1):58-68. PubMed ID: 8828648 [TBL] [Abstract][Full Text] [Related]
15. Parabolic flight as a spaceflight analog. Shelhamer M J Appl Physiol (1985); 2016 Jun; 120(12):1442-8. PubMed ID: 26796759 [TBL] [Abstract][Full Text] [Related]
16. Muscle synergies of multidirectional postural control in astronauts on Earth after a long-term stay in space. Hagio S; Ishihara A; Terada M; Tanabe H; Kibushi B; Higashibata A; Yamada S; Furukawa S; Mukai C; Ishioka N; Kouzaki M J Neurophysiol; 2022 May; 127(5):1230-1239. PubMed ID: 35353615 [TBL] [Abstract][Full Text] [Related]
17. Rotation otolith tilt-translation reinterpretation (ROTTR) hypothesis: a new hypothesis to explain neurovestibular spaceflight adaptation. Merfeld DM J Vestib Res; 2003; 13(4-6):309-20. PubMed ID: 15096674 [TBL] [Abstract][Full Text] [Related]
18. An Augmented Reality Hand-Eye Sensorimotor Impairment Assessment for Spaceflight Operations. Allred AR; Weiss H; Clark TK; Stirling L Aerosp Med Hum Perform; 2024 Feb; 95(2):69-78. PubMed ID: 38263106 [No Abstract] [Full Text] [Related]
20. Sensorimotor and perceptual function of muscle proprioception in microgravity. Roll JP; Popov K; Gurfinkel V; Lipshits M; André-Deshays C; Gilhodes JC; Quoniam C J Vestib Res; 1993; 3(3):259-73. PubMed ID: 8275261 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]