These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 31747517)

  • 1. Conversion of Viscous Oil-in-Water Nanoemulsions to Viscoelastic Gels upon Removal of Excess Ionic Emulsifier.
    Kadiya K; Ghosh S
    Langmuir; 2019 Dec; 35(52):17061-17074. PubMed ID: 31747517
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of emulsifier concentration on nanoemulsion gelation.
    Erramreddy VV; Ghosh S
    Langmuir; 2014 Sep; 30(37):11062-74. PubMed ID: 25137632
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of protein type, concentration and oil droplet size on the formation of repulsively jammed elastic nanoemulsion gels.
    Patel A; Mohanan A; Ghosh S
    Soft Matter; 2019 Dec; 15(47):9762-9775. PubMed ID: 31742298
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of lentil proteins isolate concentration on the formation, stability and rheological behavior of oil-in-water nanoemulsions.
    Primozic M; Duchek A; Nickerson M; Ghosh S
    Food Chem; 2017 Dec; 237():65-74. PubMed ID: 28764048
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of the chitosan second layer on the gelation and controlled digestion of Citrem-chitosan bilayer emulsions.
    Kadiya K; Sharma M; Ghosh S
    Food Funct; 2022 Mar; 13(5):2515-2533. PubMed ID: 35147626
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Long-term stability of sodium caseinate-stabilized nanoemulsions.
    Yerramilli M; Ghosh S
    J Food Sci Technol; 2017 Jan; 54(1):82-92. PubMed ID: 28242906
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of Emulsifier Type, Maltodextrin, and β-Cyclodextrin on Physical and Oxidative Stability of Oil-In-Water Emulsions.
    Kibici D; Kahveci D
    J Food Sci; 2019 Jun; 84(6):1273-1280. PubMed ID: 31059587
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formation and stability of nanoemulsions with mixed ionic-nonionic surfactants.
    Wang L; Tabor R; Eastoe J; Li X; Heenan RK; Dong J
    Phys Chem Chem Phys; 2009 Nov; 11(42):9772-8. PubMed ID: 19851556
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interdroplet Interactions and Rheology of Concentrated Nanoemulsions for Templating Porous Polymers.
    Abbasian Chaleshtari Z; Salimi-Kenari H; Foudazi R
    Langmuir; 2021 Jan; 37(1):76-89. PubMed ID: 33337881
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characteristics and pH-Responsiveness of SDBS-Stabilized Crude Oil/Water Nanoemulsions.
    Onaizi SA
    Nanomaterials (Basel); 2022 May; 12(10):. PubMed ID: 35630894
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of Ultrasonic Operating Parameters and Emulsifier System on Sacha Inchi Oil Nanoemulsion Characteristics.
    Sinsuebpol C; Changsan N
    J Oleo Sci; 2020 May; 69(5):437-448. PubMed ID: 32281560
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrasonic-Assisted Fabrication of Concentrated Triglyceride Nanoemulsions and Nanogels.
    Nejatian M; Abbasi S; Kadkhodaee R
    Langmuir; 2018 Sep; 34(38):11433-11441. PubMed ID: 30153026
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Degradation of kinetically-stable o/w emulsions.
    Capek I
    Adv Colloid Interface Sci; 2004 Mar; 107(2-3):125-55. PubMed ID: 15026289
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reprint of: Impact of alcohols on the formation and stability of protein-stabilized nanoemulsions.
    Zeeb B; Herz E; McClements DJ; Weiss J
    J Colloid Interface Sci; 2015 Jul; 449():13-20. PubMed ID: 25865241
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of microfluidization methods for efficient production of concentrated nanoemulsions: Comparison of single- and dual-channel microfluidizers.
    Bai L; McClements DJ
    J Colloid Interface Sci; 2016 Mar; 466():206-12. PubMed ID: 26724703
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rheological study of nanoemulsions with repulsive and attractive interdroplet interactions.
    Abbasian Chaleshtari Z; Foudazi R
    Soft Matter; 2023 Nov; 19(43):8337-8348. PubMed ID: 37873582
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimization of preparation conditions for quercetin nanoemulsions using response surface methodology.
    Karadag A; Yang X; Ozcelik B; Huang Q
    J Agric Food Chem; 2013 Mar; 61(9):2130-9. PubMed ID: 23330985
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of stable curcumin nanoemulsions: effects of emulsifier type and surfactant-to-oil ratios.
    Ma P; Zeng Q; Tai K; He X; Yao Y; Hong X; Yuan F
    J Food Sci Technol; 2018 Sep; 55(9):3485-3497. PubMed ID: 30150807
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formulation and characterization of oil-in-water nanoemulsions stabilized by crude saponins isolated from onion skin waste.
    Dahlawi SM; Nazir W; Iqbal R; Asghar W; Khalid N
    RSC Adv; 2020 Oct; 10(65):39700-39707. PubMed ID: 35515407
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Salt and pH-Induced Attractive Interactions on the Rheology of Food Protein-Stabilized Nanoemulsions.
    Patel A; Longmore N; Mohanan A; Ghosh S
    ACS Omega; 2019 Jul; 4(7):11791-11800. PubMed ID: 31460287
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.