BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 3174756)

  • 1. Effects of intrathecal antagonists on the antinociception, hypotension, and bradycardia produced by intravenous administration of [D-Ala2]-methionine enkephalinamide (DALA) in the rat.
    Aicher SA; Randich A
    Pharmacol Biochem Behav; 1988 May; 30(1):65-72. PubMed ID: 3174756
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antinociception and cardiovascular responses produced by intravenous morphine: the role of vagal afferents.
    Randich A; Thurston CL; Ludwig PS; Timmerman MR; Gebhart GF
    Brain Res; 1991 Mar; 543(2):256-70. PubMed ID: 2059834
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antagonism of stimulation-produced antinociception by intrathecal administration of methysergide or phentolamine.
    Hammond DL; Yaksh TL
    Brain Res; 1984 Apr; 298(2):329-37. PubMed ID: 6326954
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [D-Ala2]-methionine enkephalinamide (DALA): characterization of antinociceptive, cardiovascular, and autonomic nervous system actions in conscious and pentobarbital-anesthetized rats.
    Randich A; Callahan MF
    Pharmacol Biochem Behav; 1986 Sep; 25(3):641-50. PubMed ID: 3774831
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Medullary substrates of descending spinal inhibition activated by intravenous administration of [D-Ala2]methionine enkephalinamide in the rat.
    Randich A; Aimone LD; Gebhart GF
    Brain Res; 1987 May; 411(2):236-47. PubMed ID: 3607431
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antagonism of stimulation-produced antinociception from ventrolateral pontine sites by intrathecal administration of alpha-adrenergic antagonists and naloxone.
    Miller JF; Proudfit HK
    Brain Res; 1990 Oct; 530(1):20-34. PubMed ID: 1980228
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence for the involvement of descending noradrenergic pathways in the antinociceptive effect of baclofen.
    Sawynok J; Dickson C
    Brain Res; 1985 May; 335(1):89-97. PubMed ID: 3924340
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative characterization and spinal substrates of antinociception produced by electrical stimulation of the subdiaphragmatic vagus in rats.
    Thurston CL; Randich A
    Pain; 1991 Feb; 44(2):201-209. PubMed ID: 2052387
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [D-Ala2]-methionine enkephalinamide reflexively induces antinociception by activating vagal afferents.
    Randich A; Maixner W
    Pharmacol Biochem Behav; 1984 Sep; 21(3):441-8. PubMed ID: 6494213
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Methionine oxidation enhances opioid activity of an enkephalin analog.
    Kiritsy-Roy JA; Chan SK; Iwamoto ET
    Life Sci; 1983 Feb; 32(8):889-93. PubMed ID: 6131372
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A local serotonergic component involved in the spinal antinociceptive action of morphine.
    Crisp T; Smith DJ
    Neuropharmacology; 1989 Oct; 28(10):1047-53. PubMed ID: 2554180
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Action of enkephalin analogues and morphine on brain acetylcholine release: differential reversal by naloxone and an opiate pentapeptide.
    Jhamandas K; Sutak M
    Br J Pharmacol; 1980; 71(1):201-10. PubMed ID: 7470736
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vagal afferent modulation of a nociceptive reflex in rats: involvement of spinal opioid and monoamine receptors.
    Ren K; Randich A; Gebhart GF
    Brain Res; 1988 Apr; 446(2):285-94. PubMed ID: 2836031
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of antinociception induced by supraspinally administered L-arginine and kyotorphin.
    Kawabata A; Manabe S; Takagi H
    Br J Pharmacol; 1994 Jul; 112(3):817-22. PubMed ID: 7921607
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Centrally-mediated antinociceptive action of RWJ-22757 (formerly McN-5195): involvement of spinal descending inhibitory pathways (an hypothesis).
    Vaught JL; Raffa RB
    Life Sci; 1991; 48(23):2233-41. PubMed ID: 2046456
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spinal serotonin receptors mediate descending facilitation of a nociceptive reflex from the nuclei reticularis gigantocellularis and gigantocellularis pars alpha in the rat.
    Zhuo M; Gebhart GF
    Brain Res; 1991 May; 550(1):35-48. PubMed ID: 1888999
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of renal nerves in excretory responses to exogenous and endogenous opioid peptides.
    Kapusta DR; Jones SY; Kopp UC; Dibona GF
    J Pharmacol Exp Ther; 1989 Mar; 248(3):1039-47. PubMed ID: 2703962
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spinal monoaminergic receptors mediate the antinociception produced by glutamate in the medullary lateral reticular nucleus.
    Janss AJ; Gebhart GF
    J Neurosci; 1987 Sep; 7(9):2862-73. PubMed ID: 2887644
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interactions between enkephalin and dopamine in the control of locomotor activity in the rat: a new hypothesis.
    Agmo A; de Avila N
    Pharmacol Biochem Behav; 1985 Apr; 22(4):599-603. PubMed ID: 3991768
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impaired learning of classically conditioned bradycardia in rats following fourth ventricle administration of D-Ala2-methionine-enkephalinamide.
    Harris GC; Fitzgerald RD
    Behav Neurosci; 1989 Feb; 103(1):77-83. PubMed ID: 2923679
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.