BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 31747618)

  • 21. CXCR4-targeted modular peptide carriers for efficient anti-VEGF siRNA delivery.
    Egorova A; Shubina A; Sokolov D; Selkov S; Baranov V; Kiselev A
    Int J Pharm; 2016 Dec; 515(1-2):431-440. PubMed ID: 27789364
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The potential and advances in RNAi therapy: chemical and structural modifications of siRNA molecules and use of biocompatible nanocarriers.
    Joo MK; Yhee JY; Kim SH; Kim K
    J Control Release; 2014 Nov; 193():113-21. PubMed ID: 24862319
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Anti-EGF Receptor Aptamer-Guided Co-Delivery of Anti-Cancer siRNAs and Quantum Dots for Theranostics of Triple-Negative Breast Cancer.
    Kim MW; Jeong HY; Kang SJ; Jeong IH; Choi MJ; You YM; Im CS; Song IH; Lee TS; Lee JS; Lee A; Park YS
    Theranostics; 2019; 9(3):837-852. PubMed ID: 30809312
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Polyethylenimines for RNAi-mediated gene targeting in vivo and siRNA delivery to the lung.
    Günther M; Lipka J; Malek A; Gutsch D; Kreyling W; Aigner A
    Eur J Pharm Biopharm; 2011 Apr; 77(3):438-49. PubMed ID: 21093588
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Recent advances in siRNA delivery for cancer therapy using smart nanocarriers.
    Zhang P; An K; Duan X; Xu H; Li F; Xu F
    Drug Discov Today; 2018 Apr; 23(4):900-911. PubMed ID: 29373841
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles.
    Davis ME; Zuckerman JE; Choi CH; Seligson D; Tolcher A; Alabi CA; Yen Y; Heidel JD; Ribas A
    Nature; 2010 Apr; 464(7291):1067-70. PubMed ID: 20305636
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nonviral in vivo delivery of therapeutic small interfering RNAs.
    Aigner A
    Curr Opin Mol Ther; 2007 Aug; 9(4):345-52. PubMed ID: 17694447
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Lipid-based Vehicles for siRNA Delivery in Biomedical Field.
    Li T; Huang L; Yang M
    Curr Pharm Biotechnol; 2020; 21(1):3-22. PubMed ID: 31549951
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Influence of particle size on the in vivo potency of lipid nanoparticle formulations of siRNA.
    Chen S; Tam YYC; Lin PJC; Sung MMH; Tam YK; Cullis PR
    J Control Release; 2016 Aug; 235():236-244. PubMed ID: 27238441
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The valency of fatty acid conjugates impacts siRNA pharmacokinetics, distribution, and efficacy in vivo.
    Biscans A; Coles A; Echeverria D; Khvorova A
    J Control Release; 2019 May; 302():116-125. PubMed ID: 30940496
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The role of disulfide-bridge on the activities of H-shape gemini-like cationic lipid based siRNA delivery.
    Ma XF; Sun J; Qiu C; Wu YF; Zheng Y; Yu MZ; Pei XW; Wei L; Niu YJ; Pang WH; Yang ZJ; Wang JC; Zhang Q
    J Control Release; 2016 Aug; 235():99-111. PubMed ID: 27242198
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Therapeutic delivery of siRNA with polymeric carriers to down-regulate STAT5A expression in high-risk B-cell acute lymphoblastic leukemia (B-ALL).
    Mohseni M; Kucharski C; K C RB; Nasrullah M; Jiang X; Uludağ H; Brandwein J
    PLoS One; 2021; 16(6):e0251719. PubMed ID: 34157051
    [TBL] [Abstract][Full Text] [Related]  

  • 33. SiRNA delivery: challenges and role of carrier systems.
    Shegokar R; Al Shaal L; Mishra PR
    Pharmazie; 2011 May; 66(5):313-8. PubMed ID: 21699063
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Attacking the genome: emerging siRNA nanocarriers from concept to clinic.
    Alabi C; Vegas A; Anderson D
    Curr Opin Pharmacol; 2012 Aug; 12(4):427-33. PubMed ID: 22726555
    [TBL] [Abstract][Full Text] [Related]  

  • 35. siRNA-Conjugated Nanoparticles to Treat Ovarian Cancer.
    Halbur C; Choudhury N; Chen M; Kim JH; Chung EJ
    SLAS Technol; 2019 Apr; 24(2):137-150. PubMed ID: 30616494
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Small Interfering RNAs and their Delivery Systems: A Novel Powerful Tool for the Potential Treatment of HIV Infections.
    Bolhassani A; Milani A
    Curr Mol Pharmacol; 2020; 13(3):173-181. PubMed ID: 31760929
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Understanding structure-activity relationships of pH-sensitive cationic lipids facilitates the rational identification of promising lipid nanoparticles for delivering siRNAs in vivo.
    Sato Y; Hashiba K; Sasaki K; Maeki M; Tokeshi M; Harashima H
    J Control Release; 2019 Feb; 295():140-152. PubMed ID: 30610950
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nanoparticles for targeted delivery of therapeutics and small interfering RNAs in hepatocellular carcinoma.
    Varshosaz J; Farzan M
    World J Gastroenterol; 2015 Nov; 21(42):12022-41. PubMed ID: 26576089
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nanotechnology for in vivo targeted siRNA delivery.
    Dahlman JE; Kauffman KJ; Langer R; Anderson DG
    Adv Genet; 2014; 88():37-69. PubMed ID: 25409603
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nonviral pulmonary delivery of siRNA.
    Merkel OM; Kissel T
    Acc Chem Res; 2012 Jul; 45(7):961-70. PubMed ID: 21905687
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.