BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

655 related articles for article (PubMed ID: 31747897)

  • 1. Identification of key genes and regulators associated with carotenoid metabolism in apricot (Prunus armeniaca) fruit using weighted gene coexpression network analysis.
    Zhang L; Zhang Q; Li W; Zhang S; Xi W
    BMC Genomics; 2019 Nov; 20(1):876. PubMed ID: 31747897
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcriptional regulatory networks controlling taste and aroma quality of apricot (Prunus armeniaca L.) fruit during ripening.
    Zhang Q; Feng C; Li W; Qu Z; Zeng M; Xi W
    BMC Genomics; 2019 Jan; 20(1):45. PubMed ID: 30646841
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative metabolomic and transcriptomic analysis reveals a coexpression network of the carotenoid metabolism pathway in the panicle of Setaria italica.
    Li H; Han S; Huo Y; Ma G; Sun Z; Li H; Hou S; Han Y
    BMC Plant Biol; 2022 Mar; 22(1):105. PubMed ID: 35260077
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monitoring Apricot (
    García-Gómez BE; Salazar JA; Egea JA; Rubio M; Martínez-Gómez P; Ruiz D
    Int J Mol Sci; 2022 Apr; 23(9):. PubMed ID: 35562966
    [TBL] [Abstract][Full Text] [Related]  

  • 5. BCH1 expression pattern contributes to the fruit carotenoid diversity between peach and apricot.
    Wang P; Lu S; Jing R; Hyden B; Li L; Zhao X; Zhang L; Han Y; Zhang X; Xu J; Chen H; Cao H
    Plant Physiol Biochem; 2023 Apr; 197():107647. PubMed ID: 36940521
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptome analysis insight into ethylene metabolism and pectinase activity of apricot (Prunus armeniaca L.) development and ripening.
    Xu M; Zhou W; Geng W; Zhao S; Pan Y; Fan G; Zhang S; Wang Y; Liao K
    Sci Rep; 2021 Jun; 11(1):13569. PubMed ID: 34193901
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of Key Genes Controlling Carotenoid Metabolism during Apricot Fruit Development by Integrating Metabolic Phenotypes and Gene Expression Profiles.
    Zhou W; Zhao S; Xu M; Niu Y; Nasier M; Fan G; Quan S; Zhang S; Wang Y; Liao K
    J Agric Food Chem; 2021 Aug; 69(32):9472-9483. PubMed ID: 34347458
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carotenoid metabolism during bilberry (Vaccinium myrtillus L.) fruit development under different light conditions is regulated by biosynthesis and degradation.
    Karppinen K; Zoratti L; Sarala M; Carvalho E; Hirsimäki J; Mentula H; Martens S; Häggman H; Jaakola L
    BMC Plant Biol; 2016 Apr; 16():95. PubMed ID: 27098458
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Genes of
    Xi W; Zhang L; Liu S; Zhao G
    Front Plant Sci; 2020; 11():607715. PubMed ID: 33391319
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative transcriptomics and weighted gene co-expression correlation network analysis (WGCNA) reveal potential regulation mechanism of carotenoid accumulation in Chrysanthemum × morifolium.
    Lu C; Pu Y; Liu Y; Li Y; Qu J; Huang H; Dai S
    Plant Physiol Biochem; 2019 Sep; 142():415-428. PubMed ID: 31416008
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analyzing Differentially Expressed Genes and Pathways Associated with Pistil Abortion in Japanese Apricot via RNA-Seq.
    Shi T; Iqbal S; Ayaz A; Bai Y; Pan Z; Ni X; Hayat F; Saqib Bilal M; Khuram Razzaq M; Gao Z
    Genes (Basel); 2020 Sep; 11(9):. PubMed ID: 32942711
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of Metabolites and Gene Expression Changes Relative to Apricot (
    García-Gómez BE; Ruiz D; Salazar JA; Rubio M; Martínez-García PJ; Martínez-Gómez P
    Front Plant Sci; 2020; 11():1269. PubMed ID: 32973833
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptome sequencing of the apricot (Prunus armeniaca L.) and identification of differentially expressed genes involved in drought stress.
    Liu J; Deng JL; Tian Y
    Phytochemistry; 2020 Mar; 171():112226. PubMed ID: 31923721
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative genomics reveals candidate carotenoid pathway regulators of ripening watermelon fruit.
    Grassi S; Piro G; Lee JM; Zheng Y; Fei Z; Dalessandro G; Giovannoni JJ; Lenucci MS
    BMC Genomics; 2013 Nov; 14():781. PubMed ID: 24219562
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative Transcriptional Analysis of Loquat Fruit Identifies Major Signal Networks Involved in Fruit Development and Ripening Process.
    Song H; Zhao X; Hu W; Wang X; Shen T; Yang L
    Int J Mol Sci; 2016 Nov; 17(11):. PubMed ID: 27827928
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcriptome regulation of carotenoids in five flesh-colored watermelons (Citrullus lanatus).
    Yuan P; Umer MJ; He N; Zhao S; Lu X; Zhu H; Gong C; Diao W; Gebremeskel H; Kuang H; Liu W
    BMC Plant Biol; 2021 Apr; 21(1):203. PubMed ID: 33910512
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploring the differential mechanisms of carotenoid biosynthesis in the yellow peel and red flesh of papaya.
    Shen YH; Yang FY; Lu BG; Zhao WW; Jiang T; Feng L; Chen XJ; Ming R
    BMC Genomics; 2019 Jan; 20(1):49. PubMed ID: 30651061
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The R2R3-MYB transcription factor PaMYB10 is involved in anthocyanin biosynthesis in apricots and determines red blushed skin.
    Xi W; Feng J; Liu Y; Zhang S; Zhao G
    BMC Plant Biol; 2019 Jul; 19(1):287. PubMed ID: 31262258
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Red light-transmittance bagging promotes carotenoid accumulation of grapefruit during ripening.
    Huang X; Hu L; Kong W; Yang C; Xi W
    Commun Biol; 2022 Apr; 5(1):303. PubMed ID: 35379890
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative transcriptome profiling and morphology provide insights into endocarp cleaving of apricot cultivar (Prunus armeniaca L.).
    Zhang X; Zhang L; Zhang Q; Xu J; Liu W; Dong W
    BMC Plant Biol; 2017 Apr; 17(1):72. PubMed ID: 28399812
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 33.