These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 31748066)

  • 1. Design and Analysis of Multi Junction Solar Photovoltaic Cell with Graphene as an Intermediate Layer.
    Chawla R; Singhal P; Garg AK
    J Nanosci Nanotechnol; 2020 Jun; 20(6):3693-3702. PubMed ID: 31748066
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development and Analysis of Graphene-Sheet-Based GaAs Schottky Solar Cell for Enriched Efficiency.
    Phimu LK; Dhar RS; Singh KJ; Banerjee A
    Micromachines (Basel); 2023 Jun; 14(6):. PubMed ID: 37374811
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling of High-Efficiency Multi-Junction Polymer and Hybrid Solar Cells to Absorb Infrared Light.
    Khanam JJ; Foo SY
    Polymers (Basel); 2019 Feb; 11(2):. PubMed ID: 30960367
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Performance comparison of III-V//Si and III-V//InGaAs multi-junction solar cells fabricated by the combination of mechanical stacking and wire bonding.
    Kao YC; Chou HM; Hsu SC; Lin A; Lin CC; Shih ZH; Chang CL; Hong HF; Horng RH
    Sci Rep; 2019 Mar; 9(1):4308. PubMed ID: 30867491
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultra-High Concentration Vertical Homo-Multijunction Solar Cells for CubeSats and Terrestrial Applications.
    Abushattal AA; Loureiro AG; Boukortt NEI
    Micromachines (Basel); 2024 Jan; 15(2):. PubMed ID: 38398933
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Performance assessment of a triple-junction solar cell with 1.0 eV GaAsBi absorber.
    Paulauskas T; Pačebutas V; Strazdienė V; Geižutis A; Devenson J; Kamarauskas M; Skapas M; Kondrotas R; Drazdys M; Rudzikas M; Šebeka B; Vretenár V; Krotkus A
    Discov Nano; 2023 Jun; 18(1):86. PubMed ID: 37382743
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theoretical modeling and ultra-thin design for multi-junction solar cells with a light-trapping front surface and its application to InGaP/GaAs/InGaAs 3-junction.
    Zhu L; Wang Y; Pan X; Akiyama H
    Opt Express; 2022 Sep; 30(20):35202-35218. PubMed ID: 36258477
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved Performance of Ge Solar Cell Using Graphene Quantum Dots.
    Yun Y; Kim K; Moon S; Lee M; Lee J
    J Nanosci Nanotechnol; 2020 Aug; 20(8):4704-4707. PubMed ID: 32126644
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced Conversion Efficiency of III-V Triple-junction Solar Cells with Graphene Quantum Dots.
    Lin TN; Santiago SR; Zheng JA; Chao YC; Yuan CT; Shen JL; Wu CH; Lin CJ; Liu WR; Cheng MC; Chou WC
    Sci Rep; 2016 Dec; 6():39163. PubMed ID: 27982073
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A graphene/single GaAs nanowire Schottky junction photovoltaic device.
    Luo Y; Yan X; Zhang J; Li B; Wu Y; Lu Q; Jin C; Zhang X; Ren X
    Nanoscale; 2018 May; 10(19):9212-9217. PubMed ID: 29726561
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation of Polymer/Si Thin Film Tandem Solar Cell Using TCAD Numerical Simulation.
    Okil M; Shaker A; Salah MM; Abdolkader TM; Ahmed IS
    Polymers (Basel); 2023 Apr; 15(9):. PubMed ID: 37177196
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optical and electrical study of core-shell silicon nanowires for solar applications.
    Li Z; Wang J; Singh N; Lee S
    Opt Express; 2011 Sep; 19 Suppl 5():A1057-66. PubMed ID: 21935248
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of Growth Temperature on the Characteristics of Single-Junction p–i–n InGaP Solar Cells.
    Jung SH; Kim Y; Kim CZ; Jun DH; Kim K; Shin HB; Choi J; Park WK; Lee J; Kang HK
    J Nanosci Nanotechnol; 2017 Apr; 17(4):2559-562. PubMed ID: 29658687
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optical coupling from InGaAs subcell to InGaP subcell in InGaP/InGaAs/Ge multi-junction solar cells.
    Shu GW; Lin JY; Jian HT; Shen JL; Wang SC; Chou CL; Chou WC; Wu CH; Chiu CH; Kuo HC
    Opt Express; 2013 Jan; 21 Suppl 1():A123-30. PubMed ID: 23389263
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High Efficiency Near-Infrared and Semitransparent Non-Fullerene Acceptor Organic Photovoltaic Cells.
    Li Y; Lin JD; Che X; Qu Y; Liu F; Liao LS; Forrest SR
    J Am Chem Soc; 2017 Nov; 139(47):17114-17119. PubMed ID: 29144745
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of Graphene/TiO₂ Composite Layer on the Performance of Dye-Sensitized Solar Cells.
    Wei L; Chen S; Yang Y; Dong Y; Song W; Fan R
    J Nanosci Nanotechnol; 2018 Feb; 18(2):976-983. PubMed ID: 29448522
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transparent flexible organic solar cells with 6.87% efficiency manufactured by an all-solution process.
    da Silva WJ; Kim HP; Rashid bin Mohd Yusoff A; Jang J
    Nanoscale; 2013 Oct; 5(19):9324-9. PubMed ID: 23949021
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multilayer-Grown Ultrathin Nanostructured GaAs Solar Cells as a Cost-Competitive Materials Platform for III-V Photovoltaics.
    Gai B; Sun Y; Lim H; Chen H; Faucher J; Lee ML; Yoon J
    ACS Nano; 2017 Jan; 11(1):992-999. PubMed ID: 28075560
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fuse the π-Bridge to Acceptor Moiety of Donor-π-Acceptor Conjugated Polymer: Enabling an All-Round Enhancement in Photovoltaic Parameters of Nonfullerene Organic Solar Cells.
    Yu L; Li Y; Wang Y; Wang X; Cui W; Wen S; Zheng N; Sun M; Yang R
    ACS Appl Mater Interfaces; 2019 Aug; 11(34):31087-31095. PubMed ID: 31370399
    [TBL] [Abstract][Full Text] [Related]  

  • 20. WS
    Debbarma R; Behura SK; Wen Y; Che S; Berry V
    Nanoscale; 2018 Nov; 10(43):20218-20225. PubMed ID: 30357212
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.