These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 31748192)

  • 1. Resonance Raman scattering-infrared absorption dual-mode immunosensing for carcinoembryonic antigen based on ZnO@SiO
    Wang K; Xing X; Ding Y; Guo W; Hong X; Zhao H
    Biosens Bioelectron; 2020 Feb; 150():111870. PubMed ID: 31748192
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluorescence-infrared absorption dual-mode nanoprobes based on carbon dots@SiO
    Wang K; Ding Y; Yang W; Wen X; Zhao H; Liu Y; Hong X
    Talanta; 2021 Aug; 230():122342. PubMed ID: 33934792
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A dual-mode immunosensing strategy for prostate specific antigen detection: Integration of resonance Raman scattering and photoluminescence properties of ZnS:Mn
    Wang K; Xing X; Ding Y; Wen X; Lu Y; Wang G; Wang J; Zhao H; Hong X
    Anal Chim Acta; 2022 May; 1205():339775. PubMed ID: 35414400
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An infrared IgG immunoassay based on the use of a nanocomposite consisting of silica coated Fe
    Wang K; Ding Y; Hong X; Liu Y
    Mikrochim Acta; 2019 Jan; 186(2):99. PubMed ID: 30631954
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Orthogonal dual molecularly imprinted polymer-based plasmonic immunosandwich assay: A double characteristic recognition strategy for specific detection of glycoproteins.
    Zhou L; Wang Y; Xing R; Chen J; Liu J; Li W; Liu Z
    Biosens Bioelectron; 2019 Dec; 145():111729. PubMed ID: 31581071
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Immunosensing procedures for carcinoembryonic antigen using graphene and nanocomposites.
    Luong JHT; Vashist SK
    Biosens Bioelectron; 2017 Mar; 89(Pt 1):293-304. PubMed ID: 26620098
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gold nanoparticle-based low limit of detection Love wave biosensor for carcinoembryonic antigens.
    Li S; Wan Y; Su Y; Fan C; Bhethanabotla VR
    Biosens Bioelectron; 2017 Sep; 95():48-54. PubMed ID: 28412660
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrahigh sensitive enhanced-electrochemiluminescence detection of cancer biomarkers using silica NPs/graphene oxide: A comparative study.
    Rashidiani J; Kamali M; Sedighian H; Akbariqomi M; Mansouri M; Kooshki H
    Biosens Bioelectron; 2018 Apr; 102():226-233. PubMed ID: 29149688
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection of CEA in human serum using surface-enhanced Raman spectroscopy coupled with antibody-modified Au and γ-Fe₂O₃@Au nanoparticles.
    Lin Y; Xu G; Wei F; Zhang A; Yang J; Hu Q
    J Pharm Biomed Anal; 2016 Mar; 121():135-140. PubMed ID: 26808062
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A sandwich-type electrochemical immunosensor for carcinoembryonic antigen based on signal amplification strategy of optimized ferrocene functionalized Fe₃O₄@SiO₂ as labels.
    Feng T; Qiao X; Wang H; Sun Z; Hong C
    Biosens Bioelectron; 2016 May; 79():48-54. PubMed ID: 26686923
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly Sensitive Love Mode Acoustic Wave Platform with SiO
    Li C; Zhang J; Xie H; Luo J; Fu C; Tao R; Li H; Fu Y
    Biosensors (Basel); 2022 Jul; 12(7):. PubMed ID: 35884339
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mulberry-like Au@PtPd porous nanorods composites as signal amplifiers for sensitive detection of CEA.
    Jia Y; Li Y; Zhang S; Wang P; Liu Q; Dong Y
    Biosens Bioelectron; 2020 Feb; 149():111842. PubMed ID: 31726273
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrasensitive analysis of carcinoembryonic antigen based on MoS
    Su S; Sun Q; Wan L; Gu X; Zhu D; Zhou Y; Chao J; Wang L
    Biosens Bioelectron; 2019 Sep; 140():111353. PubMed ID: 31150982
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D origami electrochemical immunodevice for sensitive point-of-care testing based on dual-signal amplification strategy.
    Ma C; Li W; Kong Q; Yang H; Bian Z; Song X; Yu J; Yan M
    Biosens Bioelectron; 2015 Jan; 63():7-13. PubMed ID: 25048447
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrochemical detection of carcinoembryonic antigen.
    Gu X; She Z; Ma T; Tian S; Kraatz HB
    Biosens Bioelectron; 2018 Apr; 102():610-616. PubMed ID: 29247972
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dual-mode immunoassay based on shape code and infrared absorption fingerprint signals of silica nanorods.
    Zhao P; Ni R; Wang K; Hong X; Ding Y; Cong T; Liu J; Zhao H
    Anal Bioanal Chem; 2017 Jul; 409(17):4207-4213. PubMed ID: 28451719
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Disposable immunosensor array for ultrasensitive detection of tumor markers using glucose oxidase-functionalized silica nanosphere tags.
    Lai G; Wu J; Leng C; Ju H; Yan F
    Biosens Bioelectron; 2011 May; 26(9):3782-7. PubMed ID: 21411307
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A microfluidic chip using Au@SiO
    Gu Y; Li Z; Ge S; Mao Y; Gu Y; Cao X; Lu D
    Anal Bioanal Chem; 2022 Nov; 414(26):7659-7673. PubMed ID: 36050486
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Magnetic immunoassay for cancer biomarker detection based on surface-enhanced resonance Raman scattering from coupled plasmonic nanostructures.
    Rong Z; Wang C; Wang J; Wang D; Xiao R; Wang S
    Biosens Bioelectron; 2016 Oct; 84():15-21. PubMed ID: 27149164
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dual signal amplification strategy of Au nanopaticles/ZnO nanorods hybridized reduced graphene nanosheet and multienzyme functionalized Au@ZnO composites for ultrasensitive electrochemical detection of tumor biomarker.
    Fang X; Liu J; Wang J; Zhao H; Ren H; Li Z
    Biosens Bioelectron; 2017 Nov; 97():218-225. PubMed ID: 28600990
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.