These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 31748516)

  • 1. Fast coalescence of metallic glass nanoparticles.
    Tian Y; Jiao W; Liu P; Song S; Lu Z; Hirata A; Chen M
    Nat Commun; 2019 Nov; 10(1):5249. PubMed ID: 31748516
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Growth Mechanisms of Amorphous Nanoparticles in Solution and During Heat Drying.
    Narula A; Yang DH; Chakravarty P; Li N
    J Pharm Sci; 2024 Aug; ():. PubMed ID: 39186979
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of matrix molecular weight on the coarsening mechanism of polymer-grafted gold nanocrystals.
    Jia X; Listak J; Witherspoon V; Kalu EE; Yang X; Bockstaller MR
    Langmuir; 2010 Jul; 26(14):12190-7. PubMed ID: 20575544
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Parallel kinetic Monte Carlo simulations of two-dimensional island coarsening.
    Shi F; Shim Y; Amar JG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Sep; 76(3 Pt 1):031607. PubMed ID: 17930256
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ostwald-Driven Phase Separation in Bimetallic Nanoparticle Assemblies.
    Prévot G; Nguyen NT; Alloyeau D; Ricolleau C; Nelayah J
    ACS Nano; 2016 Apr; 10(4):4127-33. PubMed ID: 26989906
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Liquid-like behaviours of metallic glassy nanoparticles at room temperature.
    Cao CR; Huang KQ; Shi JA; Zheng DN; Wang WH; Gu L; Bai HY
    Nat Commun; 2019 Apr; 10(1):1966. PubMed ID: 31036826
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In Situ Atomic-Scale Study of Particle-Mediated Nucleation and Growth in Amorphous Bismuth to Nanocrystal Phase Transformation.
    Li J; Chen J; Wang H; Chen N; Wang Z; Guo L; Deepak FL
    Adv Sci (Weinh); 2018 Jun; 5(6):1700992. PubMed ID: 29938178
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Parallel kinetic Monte Carlo simulations of Ag(111) island coarsening using a large database.
    Nandipati G; Shim Y; Amar JG; Karim A; Kara A; Rahman TS; Trushin O
    J Phys Condens Matter; 2009 Feb; 21(8):084214. PubMed ID: 21817366
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coarsening of carbon black supported Pt nanoparticles in hydrogen.
    Simonsen SB; Wang Y; Jensen JO; Zhang W
    Nanotechnology; 2017 Nov; 28(47):475710. PubMed ID: 28984273
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ligand-Dependent Coalescence Behaviors of Gold Nanoparticles Studied by Multichamber Graphene Liquid Cell Transmission Electron Microscopy.
    Bae Y; Lim K; Kim S; Kang D; Kim BH; Kim J; Kang S; Jeon S; Cho J; Lee WB; Lee WC; Park J
    Nano Lett; 2020 Dec; 20(12):8704-8710. PubMed ID: 33186041
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatiotemporal Mapping of Hole Nucleation and Growth during Block Copolymer Terracing with High-Speed Atomic Force Microscopy.
    Murphy JG; Raybin JG; Ansay GE; Sibener SJ
    ACS Nano; 2023 Mar; 17(6):5644-5652. PubMed ID: 36912602
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reshaping, Intermixing, and Coarsening for Metallic Nanocrystals: Nonequilibrium Statistical Mechanical and Coarse-Grained Modeling.
    Lai KC; Han Y; Spurgeon P; Huang W; Thiel PA; Liu DJ; Evans JW
    Chem Rev; 2019 Jun; 119(11):6670-6768. PubMed ID: 31181906
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temperature-driven directional coalescence of silver nanoparticles.
    Yan S; Sun D; Gong Y; Tan Y; Xing X; Mo G; Chen Z; Cai Q; Li Z; Yu H; Wu Z
    J Synchrotron Radiat; 2016 May; 23(Pt 3):718-28. PubMed ID: 27140151
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct Observation of Ni Nanoparticle Growth in Carbon-Supported Nickel under Carbon Dioxide Hydrogenation Atmosphere.
    Visser NL; Turner SJ; Stewart JA; Vandegehuchte BD; van der Hoeven JES; de Jongh PE
    ACS Nano; 2023 Aug; 17(15):14963-14973. PubMed ID: 37504574
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational understanding of the coalescence of metallic nanoparticles: a mini review.
    Jiang L; Guo Y; Liu Z; Chen S
    Nanoscale; 2024 Mar; 16(11):5521-5536. PubMed ID: 38404213
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Elemental sulfur coarsening kinetics.
    Garcia AA; Druschel GK
    Geochem Trans; 2014; 15():11. PubMed ID: 26561455
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coalescence between Au nanoparticles as induced by nanocurvature effect and electron beam athermal activation effect.
    Cheng L; Zhu X; Su J
    Nanoscale; 2018 May; 10(17):7978-7983. PubMed ID: 29505042
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetic trapping through coalescence and the formation of patterned Ag-Cu nanoparticles.
    Grammatikopoulos P; Kioseoglou J; Galea A; Vernieres J; Benelmekki M; Diaz RE; Sowwan M
    Nanoscale; 2016 May; 8(18):9780-90. PubMed ID: 27119383
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fast Surface Dynamics on a Metallic Glass Nanowire.
    Chatterjee D; Annamareddy A; Ketkaew J; Schroers J; Morgan D; Voyles PM
    ACS Nano; 2021 Jul; 15(7):11309-11316. PubMed ID: 34152730
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Size-controlled nanocrystals reveal spatial dependence and severity of nanoparticle coalescence and Ostwald ripening in sintering phenomena.
    Goodman ED; Carlson EZ; Dietze EM; Tahsini N; Johnson A; Aitbekova A; Nguyen Taylor T; Plessow PN; Cargnello M
    Nanoscale; 2021 Jan; 13(2):930-938. PubMed ID: 33367382
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.