These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 31748566)

  • 1. A sodium-ion sulfide solid electrolyte with unprecedented conductivity at room temperature.
    Hayashi A; Masuzawa N; Yubuchi S; Tsuji F; Hotehama C; Sakuda A; Tatsumisago M
    Nat Commun; 2019 Nov; 10(1):5266. PubMed ID: 31748566
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Poly(vinylene carbonate)-Based Composite Polymer Electrolyte with Enhanced Interfacial Stability To Realize High-Performance Room-Temperature Solid-State Sodium Batteries.
    Chen S; Che H; Feng F; Liao J; Wang H; Yin Y; Ma ZF
    ACS Appl Mater Interfaces; 2019 Nov; 11(46):43056-43065. PubMed ID: 31660726
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vacancy-Contained Tetragonal Na
    Zhang L; Zhang D; Yang K; Yan X; Wang L; Mi J; Xu B; Li Y
    Adv Sci (Weinh); 2016 Oct; 3(10):1600089. PubMed ID: 27980981
    [No Abstract]   [Full Text] [Related]  

  • 4. Heavily Tungsten-Doped Sodium Thioantimonate Solid-State Electrolytes with Exceptionally Low Activation Energy for Ionic Diffusion.
    Feng X; Fang H; Liu P; Wu N; Self EC; Yin L; Wang P; Li X; Jena P; Nanda J; Mitlin D
    Angew Chem Int Ed Engl; 2021 Dec; 60(50):26158-26166. PubMed ID: 34569135
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Room-Temperature All-solid-state Rechargeable Sodium-ion Batteries with a Cl-doped Na3PS4 Superionic Conductor.
    Chu IH; Kompella CS; Nguyen H; Zhu Z; Hy S; Deng Z; Meng YS; Ong SP
    Sci Rep; 2016 Sep; 6():33733. PubMed ID: 27645565
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Superionic glass-ceramic electrolytes for room-temperature rechargeable sodium batteries.
    Hayashi A; Noi K; Sakuda A; Tatsumisago M
    Nat Commun; 2012 May; 3():856. PubMed ID: 22617296
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxide-Based Composite Electrolytes Using Na
    Noi K; Nagata Y; Hakari T; Suzuki K; Yubuchi S; Ito Y; Sakuda A; Hayashi A; Tatsumisago M
    ACS Appl Mater Interfaces; 2018 Jun; 10(23):19605-19614. PubMed ID: 29775274
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Core-Shell Fe
    Wan H; Mwizerwa JP; Qi X; Liu X; Xu X; Li H; Hu YS; Yao X
    ACS Nano; 2018 Mar; 12(3):2809-2817. PubMed ID: 29518320
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solid state ionics: a Japan perspective.
    Yamamoto O
    Sci Technol Adv Mater; 2017; 18(1):504-527. PubMed ID: 28804526
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Garnet-Type Fast Li-Ion Conductors with High Ionic Conductivities for All-Solid-State Batteries.
    Wu JF; Pang WK; Peterson VK; Wei L; Guo X
    ACS Appl Mater Interfaces; 2017 Apr; 9(14):12461-12468. PubMed ID: 28332828
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improving Room Temperature Ionic Conductivity of Na
    Heo E; Wang JE; Yun JH; Kim JH; Kim DJ; Kim DK
    Inorg Chem; 2021 Aug; 60(15):11147-11153. PubMed ID: 34279910
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stabilizing the Interface between Sodium Metal Anode and Sulfide-Based Solid-State Electrolyte with an Electron-Blocking Interlayer.
    Hu P; Zhang Y; Chi X; Kumar Rao K; Hao F; Dong H; Guo F; Ren Y; Grabow LC; Yao Y
    ACS Appl Mater Interfaces; 2019 Mar; 11(10):9672-9678. PubMed ID: 30807092
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Li-Ion Cooperative Migration and Oxy-Sulfide Synergistic Effect in Li
    Zhang B; Weng M; Lin Z; Feng Y; Yang L; Wang LW; Pan F
    Small; 2020 Mar; 16(11):e1906374. PubMed ID: 32077623
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Na
    Xiong S; Liu Z; Rong H; Wang H; McDaniel M; Chen H
    Sci Rep; 2018 Jun; 8(1):9146. PubMed ID: 29904054
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Yttrium-Sodium Halides as Promising Solid-State Electrolytes with High Ionic Conductivity and Stability for Na-Ion Batteries.
    Qie Y; Wang S; Fu S; Xie H; Sun Q; Jena P
    J Phys Chem Lett; 2020 May; 11(9):3376-3383. PubMed ID: 32282213
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combining Superionic Conduction and Favorable Decomposition Products in the Crystalline Lithium-Boron-Sulfur System: A New Mechanism for Stabilizing Solid Li-Ion Electrolytes.
    Sendek AD; Antoniuk ER; Cubuk ED; Ransom B; Francisco BE; Buettner-Garrett J; Cui Y; Reed EJ
    ACS Appl Mater Interfaces; 2020 Aug; 12(34):37957-37966. PubMed ID: 32700896
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Na(+) Superionic Conductor for Room-Temperature Sodium Batteries.
    Song S; Duong HM; Korsunsky AM; Hu N; Lu L
    Sci Rep; 2016 Aug; 6():32330. PubMed ID: 27572915
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of simultaneous substitution of Y and Ta on the stabilization of cubic phase, microstructure, and Li(+) conductivity of Li7La3Zr2O12 lithium garnet.
    Dhivya L; Murugan R
    ACS Appl Mater Interfaces; 2014 Oct; 6(20):17606-15. PubMed ID: 25265573
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Composite Electrolyte for All-Solid-State Lithium Batteries: Low-Temperature Fabrication and Conductivity Enhancement.
    Lee SD; Jung KN; Kim H; Shin HS; Song SW; Park MS; Lee JW
    ChemSusChem; 2017 May; 10(10):2175-2181. PubMed ID: 28317277
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design and synthesis of the superionic conductor Na10SnP2S12.
    Richards WD; Tsujimura T; Miara LJ; Wang Y; Kim JC; Ong SP; Uechi I; Suzuki N; Ceder G
    Nat Commun; 2016 Mar; 7():11009. PubMed ID: 26984102
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.