BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

614 related articles for article (PubMed ID: 31748630)

  • 1. Numerical modelling of the effects of cold atmospheric plasma on mitochondrial redox homeostasis and energy metabolism.
    Murakami T
    Sci Rep; 2019 Nov; 9(1):17138. PubMed ID: 31748630
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mitochondria-derived ROS activate AMP-activated protein kinase (AMPK) indirectly.
    Hinchy EC; Gruszczyk AV; Willows R; Navaratnam N; Hall AR; Bates G; Bright TP; Krieg T; Carling D; Murphy MP
    J Biol Chem; 2018 Nov; 293(44):17208-17217. PubMed ID: 30232152
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Elevated cytosolic Na+ increases mitochondrial formation of reactive oxygen species in failing cardiac myocytes.
    Kohlhaas M; Liu T; Knopp A; Zeller T; Ong MF; Böhm M; O'Rourke B; Maack C
    Circulation; 2010 Apr; 121(14):1606-13. PubMed ID: 20351235
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polyethylenimine architecture-dependent metabolic imprints and perturbation of cellular redox homeostasis.
    Hall A; Parhamifar L; Lange MK; Meyle KD; Sanderhoff M; Andersen H; Roursgaard M; Larsen AK; Jensen PB; Christensen C; Bartek J; Moghimi SM
    Biochim Biophys Acta; 2015 Mar; 1847(3):328-342. PubMed ID: 25482261
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The control of tricarboxylate-cycle oxidations in blowfly flight muscle. The oxidized and reduced nicotinamide-adenine dinucleotide content of flight muscle and isolated mitochondria, the adenosine triphosphate and adenosine diphosphate content of mitochondria, and the energy status of the mitochondria during controlled respiration.
    Hansford RG
    Biochem J; 1975 Mar; 146(3):537-47. PubMed ID: 167720
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling cardiac action potential shortening driven by oxidative stress-induced mitochondrial oscillations in guinea pig cardiomyocytes.
    Zhou L; Cortassa S; Wei AC; Aon MA; Winslow RL; O'Rourke B
    Biophys J; 2009 Oct; 97(7):1843-52. PubMed ID: 19804714
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of mitochondrial redox status and energy metabolism of X-irradiated HeLa cells by LC/UV, LC/MS/MS and ESR.
    Yamamoto K; Ikenaka Y; Ichise T; Bo T; Ishizuka M; Yasui H; Hiraoka W; Yamamori T; Inanami O
    Free Radic Res; 2018 Jun; 52(6):648-660. PubMed ID: 29620489
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Melatonin-mitochondria interplay in health and disease.
    Acuña Castroviejo D; López LC; Escames G; López A; García JA; Reiter RJ
    Curr Top Med Chem; 2011; 11(2):221-40. PubMed ID: 21244359
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mitochondrial energetic metabolism: a simplified model of TCA cycle with ATP production.
    Nazaret C; Heiske M; Thurley K; Mazat JP
    J Theor Biol; 2009 Jun; 258(3):455-64. PubMed ID: 19007794
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic control of mitochondrial properties by adenine nucleotide translocator determines palmitoyl-CoA effects. Implications for a mechanism linking obesity and type 2 diabetes.
    Ciapaite J; Bakker SJ; Diamant M; van Eikenhorst G; Heine RJ; Westerhoff HV; Krab K
    FEBS J; 2006 Dec; 273(23):5288-302. PubMed ID: 17059463
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cysteine-mediated redox signalling in the mitochondria.
    Bak DW; Weerapana E
    Mol Biosyst; 2015 Mar; 11(3):678-97. PubMed ID: 25519845
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mitochondrial dysfunctions in 7-ketocholesterol-treated 158N oligodendrocytes without or with α-tocopherol: Impacts on the cellular profil of tricarboxylic cycle-associated organic acids, long chain saturated and unsaturated fatty acids, oxysterols, cholesterol and cholesterol precursors.
    Leoni V; Nury T; Vejux A; Zarrouk A; Caccia C; Debbabi M; Fromont A; Sghaier R; Moreau T; Lizard G
    J Steroid Biochem Mol Biol; 2017 May; 169():96-110. PubMed ID: 27020660
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of myocardial substrate metabolism during increased energy expenditure: insights from computational studies.
    Zhou L; Cabrera ME; Okere IC; Sharma N; Stanley WC
    Am J Physiol Heart Circ Physiol; 2006 Sep; 291(3):H1036-46. PubMed ID: 16603683
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integrating mitochondrial energetics, redox and ROS metabolic networks: a two-compartment model.
    Kembro JM; Aon MA; Winslow RL; O'Rourke B; Cortassa S
    Biophys J; 2013 Jan; 104(2):332-43. PubMed ID: 23442855
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aconitase post-translational modification as a key in linkage between Krebs cycle, iron homeostasis, redox signaling, and metabolism of reactive oxygen species.
    Lushchak OV; Piroddi M; Galli F; Lushchak VI
    Redox Rep; 2014 Jan; 19(1):8-15. PubMed ID: 24266943
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolic control analysis applied to mitochondrial networks.
    Cortassa S; Aon MA; O'Rourke B; Winslow RL
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():4673-6. PubMed ID: 22255380
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational modeling of mitochondrial energy transduction.
    Schmitz JP; Vanlier J; van Riel NA; Jeneson JA
    Crit Rev Biomed Eng; 2011; 39(5):363-77. PubMed ID: 22196159
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adenine nucleotide-dependent and redox-independent control of mitochondrial malate dehydrogenase activity in Arabidopsis thaliana.
    Yoshida K; Hisabori T
    Biochim Biophys Acta; 2016 Jun; 1857(6):810-8. PubMed ID: 26946085
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A transient increase in lipid peroxidation primes preadipocytes for delayed mitochondrial inner membrane permeabilization and ATP depletion during prolonged exposure to fatty acids.
    Rogers C; Davis B; Neufer PD; Murphy MP; Anderson EJ; Robidoux J
    Free Radic Biol Med; 2014 Feb; 67():330-41. PubMed ID: 24269897
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Parallel activation of mitochondrial oxidative metabolism with increased cardiac energy expenditure is not dependent on fatty acid oxidation in pigs.
    Zhou L; Cabrera ME; Huang H; Yuan CL; Monika DK; Sharma N; Bian F; Stanley WC
    J Physiol; 2007 Mar; 579(Pt 3):811-21. PubMed ID: 17185335
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 31.