These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 31748989)

  • 21. Desorption of hydrophobic compounds from laboratory-spiked sediments measured by Tenax absorbent and matrix solid-phase microextraction.
    You J; Pehkonen S; Landrum PF; Lydy MJ
    Environ Sci Technol; 2007 Aug; 41(16):5672-8. PubMed ID: 17874772
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Prediction of large variation in biota to sediment accumulation factors due to concentration-dependent black carbon adsorption of planar hydrophobic organic compounds.
    Cornelissen G; Gustafsson O
    Environ Toxicol Chem; 2005 Mar; 24(3):495-8. PubMed ID: 15779746
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Assessment of hydrophobic organic contaminant availability in sediments after sorbent amendment and its complete removal.
    Wu Y; Cho YM; Luthy RG; Kim K; Jung J; Gala WR; Choi Y
    Environ Pollut; 2017 Dec; 231(Pt 2):1380-1387. PubMed ID: 28943348
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bioavailability of five hydrophobic organic compounds to earthworms from sterile and non-sterile artificial soils.
    Šmídová K; Kim S; Hofman J
    Chemosphere; 2017 Jul; 179():222-231. PubMed ID: 28371706
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Benzo[a]pyrene bioavailability from pristine soil and contaminated sediment assessed using two in vitro models.
    Vasiluk L; Pinto LJ; Walji ZA; Tsang WS; Gobas FA; Eickhoff C; Moore MM
    Environ Toxicol Chem; 2007 Mar; 26(3):387-93. PubMed ID: 17373501
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Modeling biphasic sorption and desorption of hydrophobic organic contaminants in sediments.
    Chai Y; Kochetkov A; Reible DD
    Environ Toxicol Chem; 2006 Dec; 25(12):3133-40. PubMed ID: 17220081
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Adsorption of phenanthrene by earthworms - A pathway for understanding the fate of hydrophobic organic contaminants in soil-earthworm systems.
    Shi Z; Zhang F; Wang C
    J Environ Manage; 2018 Apr; 212():115-120. PubMed ID: 29428646
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Tenax as sorption sink for in vitro bioaccessibility measurement of polycyclic aromatic hydrocarbons in soils.
    Li C; Cui XY; Fan YY; Teng Y; Nan ZR; Ma LQ
    Environ Pollut; 2015 Jan; 196():47-52. PubMed ID: 25299793
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Strong binding of apolar hydrophobic organic contaminants by dissolved black carbon released from biochar: A mechanism of pseudomicelle partition and environmental implications.
    Fu H; Wei C; Qu X; Li H; Zhu D
    Environ Pollut; 2018 Jan; 232():402-410. PubMed ID: 28966024
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Characterization of polycyclic aromatic hydrocarbon bioavailability in estuarine sediments using thin-film extraction.
    Golding CJ; Gobas FA; Birch GE
    Environ Toxicol Chem; 2007 May; 26(5):829-36. PubMed ID: 17521126
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The role of desorption for describing the bioavailability of select polycyclic aromatic hydrocarbon and polychlorinated biphenyl congeners for seven laboratory-spiked sediments.
    Kukkonen JV; Landrum PF; Mitra S; Gossiaux DC; Gunnarsson J; Weston D
    Environ Toxicol Chem; 2004 Aug; 23(8):1842-51. PubMed ID: 15352471
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Equilibrium and kinetic modeling of contaminant immobilization by activated carbon amended to sediments in the field.
    Rakowska MI; Kupryianchyk D; Koelmans AA; Grotenhuis T; Rijnaarts HH
    Water Res; 2014 Dec; 67():96-104. PubMed ID: 25262554
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Part IV-sorption of hydrophobic organic contaminants.
    Pan B; Ning P; Xing B
    Environ Sci Pollut Res Int; 2008 Oct; 15(7):554-64. PubMed ID: 18923860
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Reversible and irreversible sorption of perfluorinated compounds (PFCs) by sediments of an urban reservoir.
    Chen H; Reinhard M; Nguyen VT; Gin KY
    Chemosphere; 2016 Feb; 144():1747-53. PubMed ID: 26521093
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Application of Rice-Straw Biochar and Microorganisms in Nonylphenol Remediation: Adsorption-Biodegradation Coupling Relationship and Mechanism.
    Lou L; Yao L; Cheng G; Wang L; He Y; Hu B
    PLoS One; 2015; 10(9):e0137467. PubMed ID: 26348485
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Desorption of polycyclic aromatic hydrocarbons in soils assisted by SPMD].
    Sun HW; Huo C; Wang CP
    Huan Jing Ke Xue; 2007 Aug; 28(8):1841-6. PubMed ID: 17926421
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Sorption of 2,4'-dichlorobiphenyl and fluoranthene to a marine sediment amended with different types of black carbon.
    Burgess RM; Ryba SA; Perron MM; Tien R; Thibodeau LM; Cantwell MG
    Environ Toxicol Chem; 2004 Nov; 23(11):2534-44. PubMed ID: 15559266
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Loss rates of polycyclic aromatic hydrocarbons from sediment and deposit-feeder fecal pellets.
    Horng CY; Taghon GL
    Environ Toxicol Chem; 2001 Jul; 20(7):1465-73. PubMed ID: 11434286
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Effect of microorganism for polycyclic aromatic hydrocarbons (PAHs) sorption on surface sediments and soils].
    Luo XM; He MC; Liu CM
    Huan Jing Ke Xue; 2007 Feb; 28(2):261-6. PubMed ID: 17489180
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The role of condensed organic matter in the nonlinear sorption of hydrophobic organic contaminants by a peat and sediments.
    Ran Y; Huang W; Rao PS; Liu D; Sheng G; Fu J
    J Environ Qual; 2002; 31(6):1953-62. PubMed ID: 12469845
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.