These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 31749419)

  • 1. Noradrenergic Regulation of Hippocampus-Dependent Memory.
    Nguyen PV; Connor SA
    Cent Nerv Syst Agents Med Chem; 2019; 19(3):187-196. PubMed ID: 31749419
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Norepinephrine stabilizes translation-dependent, homosynaptic long-term potentiation through mechanisms requiring the cAMP sensor Epac, mTOR and MAPK.
    Maity S; Chandanathil M; Millis RM; Connor SA
    Eur J Neurosci; 2020 Oct; 52(7):3679-3688. PubMed ID: 32275785
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Emotional enhancement of memory: how norepinephrine enables synaptic plasticity.
    Tully K; Bolshakov VY
    Mol Brain; 2010 May; 3():15. PubMed ID: 20465834
    [TBL] [Abstract][Full Text] [Related]  

  • 4. β-Adrenergic receptor signaling and modulation of long-term potentiation in the mammalian hippocampus.
    O'Dell TJ; Connor SA; Guglietta R; Nguyen PV
    Learn Mem; 2015 Sep; 22(9):461-71. PubMed ID: 26286656
    [TBL] [Abstract][Full Text] [Related]  

  • 5. β-Adrenergic Control of Hippocampal Function: Subserving the Choreography of Synaptic Information Storage and Memory.
    Hagena H; Hansen N; Manahan-Vaughan D
    Cereb Cortex; 2016 Apr; 26(4):1349-64. PubMed ID: 26804338
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Noradrenergic gating of long-lasting synaptic potentiation in the hippocampus: from neurobiology to translational biomedicine.
    Nguyen PV; Gelinas JN
    J Neurogenet; 2018 Sep; 32(3):171-182. PubMed ID: 30175650
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Longevity of Hippocampus-Dependent Memory Is Orchestrated by the Locus Coeruleus-Noradrenergic System.
    Hansen N
    Neural Plast; 2017; 2017():2727602. PubMed ID: 28695015
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Norepinephrine, beyond the Synapse: Coordinating Epigenetic Codes for Memory.
    Maity S; Abbaspour R; Nahabedian D; Connor SA
    Int J Mol Sci; 2022 Aug; 23(17):. PubMed ID: 36077313
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Cholinergic System, the Adrenergic System and the Neuropathology of Alzheimer's Disease.
    Bekdash RA
    Int J Mol Sci; 2021 Jan; 22(3):. PubMed ID: 33525357
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of metabotropic glutamate receptors in persistent forms of hippocampal plasticity and learning.
    Mukherjee S; Manahan-Vaughan D
    Neuropharmacology; 2013 Mar; 66():65-81. PubMed ID: 22743159
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neural plasticity and behavior - sixty years of conceptual advances.
    Sweatt JD
    J Neurochem; 2016 Oct; 139 Suppl 2():179-199. PubMed ID: 26875778
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Orexins/hypocretins cause sharp wave- and theta-related synaptic plasticity in the hippocampus via glutamatergic, gabaergic, noradrenergic, and cholinergic signaling.
    Selbach O; Doreulee N; Bohla C; Eriksson KS; Sergeeva OA; Poelchen W; Brown RE; Haas HL
    Neuroscience; 2004; 127(2):519-28. PubMed ID: 15262340
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Elements of a neurobiological theory of the hippocampus: the role of activity-dependent synaptic plasticity in memory.
    Morris RG; Moser EI; Riedel G; Martin SJ; Sandin J; Day M; O'Carroll C
    Philos Trans R Soc Lond B Biol Sci; 2003 Apr; 358(1432):773-86. PubMed ID: 12744273
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synaptic plasticity and memory: an evaluation of the hypothesis.
    Martin SJ; Grimwood PD; Morris RG
    Annu Rev Neurosci; 2000; 23():649-711. PubMed ID: 10845078
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contribution of Ca2+ release channels to hippocampal synaptic plasticity and spatial memory: potential redox modulation.
    Paula-Lima AC; Adasme T; Hidalgo C
    Antioxid Redox Signal; 2014 Aug; 21(6):892-914. PubMed ID: 24410659
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cellular and molecular bases of memory: synaptic and neuronal plasticity.
    Wang JH; Ko GY; Kelly PT
    J Clin Neurophysiol; 1997 Jul; 14(4):264-93. PubMed ID: 9337139
    [TBL] [Abstract][Full Text] [Related]  

  • 17. TNF-α Differentially Regulates Synaptic Plasticity in the Hippocampus and Spinal Cord by Microglia-Dependent Mechanisms after Peripheral Nerve Injury.
    Liu Y; Zhou LJ; Wang J; Li D; Ren WJ; Peng J; Wei X; Xu T; Xin WJ; Pang RP; Li YY; Qin ZH; Murugan M; Mattson MP; Wu LJ; Liu XG
    J Neurosci; 2017 Jan; 37(4):871-881. PubMed ID: 28123022
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Properties and mechanisms of long-term synaptic plasticity in the mammalian brain: relationships to learning and memory.
    Maren S; Baudry M
    Neurobiol Learn Mem; 1995 Jan; 63(1):1-18. PubMed ID: 7663875
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nogo-A regulates spatial learning as well as memory formation and modulates structural plasticity in the adult mouse hippocampus.
    Zagrebelsky M; Lonnemann N; Fricke S; Kellner Y; Preuß E; Michaelsen-Preusse K; Korte M
    Neurobiol Learn Mem; 2017 Feb; 138():154-163. PubMed ID: 27349794
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Progress in neural plasticity.
    Zhang X; Poo MM
    Sci China Life Sci; 2010 Mar; 53(3):322-329. PubMed ID: 20596926
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.