These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 31750290)

  • 1. A New Genetic Algorithm Approach Applied to Atomic and Molecular Cluster Studies.
    Silva FT; Silva MX; Belchior JC
    Front Chem; 2019; 7():707. PubMed ID: 31750290
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Revised basin-hopping Monte Carlo algorithm for structure optimization of clusters and nanoparticles.
    Rondina GG; Da Silva JL
    J Chem Inf Model; 2013 Sep; 53(9):2282-98. PubMed ID: 23957311
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The performance of minima hopping and evolutionary algorithms for cluster structure prediction.
    Schönborn SE; Goedecker S; Roy S; Oganov AR
    J Chem Phys; 2009 Apr; 130(14):144108. PubMed ID: 19368430
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A sphere-cut-splice crossover for the evolution of cluster structures.
    Chen Z; Jiang X; Li J; Li S
    J Chem Phys; 2013 Jun; 138(21):214303. PubMed ID: 23758367
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of density functional theory method to calculate structures of neutral carbon clusters Cn (3 ≤ n ≤ 24) and study their variability of structural forms.
    Yen TW; Lai SK
    J Chem Phys; 2015 Feb; 142(8):084313. PubMed ID: 25725737
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of Optimization Algorithms in Clusters.
    Srivastava R
    Front Chem; 2021; 9():637286. PubMed ID: 33777900
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An unbiased population-based search for the geometry optimization of Lennard-Jones clusters: 2 < or = N < or = 372.
    Pullan W
    J Comput Chem; 2005 Jul; 26(9):899-906. PubMed ID: 15841476
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Global optimization of binary Lennard-Jones clusters using three perturbation operators.
    Ye T; Xu R; Huang W
    J Chem Inf Model; 2011 Mar; 51(3):572-7. PubMed ID: 21332209
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel method for geometry optimization of molecular clusters: application to benzene clusters.
    Takeuchi H
    J Chem Inf Model; 2007; 47(1):104-9. PubMed ID: 17238254
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automatic Combination of Operators in a Genetic Algorithm to Solve the Traveling Salesman Problem.
    Contreras-Bolton C; Parada V
    PLoS One; 2015; 10(9):e0137724. PubMed ID: 26367182
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Basin Hopping Genetic Algorithm for Global Optimization of PtCo Clusters.
    Huang R; Bi JX; Li L; Wen YH
    J Chem Inf Model; 2020 Apr; 60(4):2219-2228. PubMed ID: 32203652
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An approach based on genetic algorithms and machine learning coupled for studying alloy and molecular clusters by optimizing quantum energy surfaces.
    Rezende UL; De Souza LA; Belchior JC
    J Comput Chem; 2023 Sep; 44(24):1956-1969. PubMed ID: 37306361
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Performance impact of mutation operators of a subpopulation-based genetic algorithm for multi-robot task allocation problems.
    Liu C; Kroll A
    Springerplus; 2016; 5(1):1361. PubMed ID: 27588254
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PDECO: parallel differential evolution for clusters optimization.
    Chen Z; Jiang X; Li J; Li S; Wang L
    J Comput Chem; 2013 May; 34(12):1046-59. PubMed ID: 23483577
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a Structural Comparison Method to Promote Exploration of the Potential Energy Surface in the Global Optimization of Nanoclusters.
    Weal GR; McIntyre SM; Garden AL
    J Chem Inf Model; 2021 Apr; 61(4):1732-1744. PubMed ID: 33844537
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of Taboo Search Methods for Atomic Cluster Global Optimization with a Basin-Hopping Algorithm.
    Smith NB; Jowett T; Yu D; Pahl E; Garden AL
    J Chem Inf Model; 2023 Sep; 63(18):5784-5793. PubMed ID: 37665618
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A genetic algorithm survey on closed-shell atomic nitrogen clusters employing a quantum chemical approach.
    Silva MX; Silva FT; Galvão BRL; Braga JP; Belchior JC
    J Mol Model; 2018 Jul; 24(8):196. PubMed ID: 29982860
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural optimization of molecular clusters with density functional theory combined with basin hopping.
    Do H; Besley NA
    J Chem Phys; 2012 Oct; 137(13):134106. PubMed ID: 23039584
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A flexible and adaptive grid algorithm for global optimization utilizing basin hopping Monte Carlo.
    Paleico ML; Behler J
    J Chem Phys; 2020 Mar; 152(9):094109. PubMed ID: 33480732
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of crossover operator in evolutionary-based approach to the problem of genetic code optimization.
    Błażej P; Wnȩtrzak M; Mackiewicz P
    Biosystems; 2016 Dec; 150():61-72. PubMed ID: 27555085
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.