BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 31750486)

  • 1. The role of metal ion binding in the antioxidant mechanisms of reduced and oxidized glutathione in metal-mediated oxidative DNA damage.
    Eteshola EOU; Haupt DA; Koos SI; Siemer LA; Morris DL
    Metallomics; 2020 Jan; 12(1):79-91. PubMed ID: 31750486
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The abilities of selenium dioxide and selenite ion to coordinate DNA-bound metal ions and decrease oxidative DNA damage.
    Hart WE; Marczak SP; Kneller AR; French RA; Morris DL
    J Inorg Biochem; 2013 Aug; 125():1-8. PubMed ID: 23628661
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intervention of glutathione in pre-mutagenic catechol-mediated DNA damage in the presence of copper(II) ions.
    Hepel M; Stobiecka M; Peachey J; Miller J
    Mutat Res; 2012 Jul; 735(1-2):1-11. PubMed ID: 22683503
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rat liver antioxidant response to iron and copper overloads.
    Musacco-Sebio R; Saporito-Magriñá C; Semprine J; Torti H; Ferrarotti N; Castro-Parodi M; Damiano A; Boveris A; Repetto MG
    J Inorg Biochem; 2014 Aug; 137():94-100. PubMed ID: 24838005
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Redox-changes associated with the glutathione-dependent ability of the Cu(II)-GSSG complex to generate superoxide.
    Aliaga ME; López-Alarcón C; García-Río L; Martín-Pastor M; Speisky H
    Bioorg Med Chem; 2012 May; 20(9):2869-76. PubMed ID: 22472042
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Copper-1,10-phenanthroline-induced apoptosis in liver carcinoma Bel-7402 cells associates with copper overload, reactive oxygen species production, glutathione depletion and oxidative DNA damage.
    Cai X; Pan N; Zou G
    Biometals; 2007 Feb; 20(1):1-11. PubMed ID: 16683182
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Switch between Antioxidant and Prooxidant Properties of the Phenolic Compounds Myricetin, Morin, 3',4'-Dihydroxyflavone, Taxifolin and 4-Hydroxy-Coumarin in the Presence of Copper(II) Ions: A Spectroscopic, Absorption Titration and DNA Damage Study.
    Jomová K; Hudecova L; Lauro P; Simunkova M; Alwasel SH; Alhazza IM; Valko M
    Molecules; 2019 Nov; 24(23):. PubMed ID: 31783535
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antioxidant vs. Prooxidant Properties of the Flavonoid, Kaempferol, in the Presence of Cu(II) Ions: A ROS-Scavenging Activity, Fenton Reaction and DNA Damage Study.
    Simunkova M; Barbierikova Z; Jomova K; Hudecova L; Lauro P; Alwasel SH; Alhazza I; Rhodes CJ; Valko M
    Int J Mol Sci; 2021 Feb; 22(4):. PubMed ID: 33562744
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ESR evidence for the generation of reactive oxygen species from the copper-mediated oxidation of the benzene metabolite, hydroquinone: role in DNA damage.
    Li Y; Kuppusamy P; Zweier JL; Trush MA
    Chem Biol Interact; 1995 Feb; 94(2):101-20. PubMed ID: 7828218
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Copper redox-dependent activation of 2-tert-butyl(1,4)hydroquinone: formation of reactive oxygen species and induction of oxidative DNA damage in isolated DNA and cultured rat hepatocytes.
    Li Y; Seacat A; Kuppusamy P; Zweier JL; Yager JD; Trush MA
    Mutat Res; 2002 Jul; 518(2):123-33. PubMed ID: 12113763
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Site-specific DNA damage induced by NADH in the presence of copper(II): role of active oxygen species.
    Oikawa S; Kawanishi S
    Biochemistry; 1996 Apr; 35(14):4584-90. PubMed ID: 8605209
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metal-mediated oxidative damage to cellular and isolated DNA by gallic acid, a metabolite of antioxidant propyl gallate.
    Kobayashi H; Oikawa S; Hirakawa K; Kawanishi S
    Mutat Res; 2004 Mar; 558(1-2):111-20. PubMed ID: 15036124
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preventing metal-mediated oxidative DNA damage with selenium compounds.
    Battin EE; Zimmerman MT; Ramoutar RR; Quarles CE; Brumaghim JL
    Metallomics; 2011 May; 3(5):503-12. PubMed ID: 21286651
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cooperative interaction between ascorbate and glutathione during mitochondrial impairment in mesencephalic cultures.
    Ehrhart J; Zeevalk GD
    J Neurochem; 2003 Sep; 86(6):1487-97. PubMed ID: 12950457
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metal specificity in DNA damage prevention by sulfur antioxidants.
    Battin EE; Brumaghim JL
    J Inorg Biochem; 2008 Dec; 102(12):2036-42. PubMed ID: 18675460
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Redox-implications associated with the formation of complexes between copper ions and reduced or oxidized glutathione.
    Aliaga ME; López-Alarcón C; Bridi R; Speisky H
    J Inorg Biochem; 2016 Jan; 154():78-88. PubMed ID: 26277412
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sulfur and selenium antioxidants: challenging radical scavenging mechanisms and developing structure-activity relationships based on metal binding.
    Zimmerman MT; Bayse CA; Ramoutar RR; Brumaghim JL
    J Inorg Biochem; 2015 Apr; 145():30-40. PubMed ID: 25600984
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Elevated semicarbazide-sensitive amine oxidase (SSAO) activity in lung with ischemia-reperfusion injury: protective effect of ischemic preconditioning plus SSAO inhibition.
    Ucar G; Topaloglu E; Burak Kandilci H; Gumusel B
    Life Sci; 2005 Dec; 78(4):421-7. PubMed ID: 16111719
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of mitochondrial glutathione in DNA base oxidation.
    Giulivi C; Cadenas E
    Biochim Biophys Acta; 1998 Sep; 1366(3):265-74. PubMed ID: 9814840
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of dental metal ions on glutathione levels in THP-1 human monocytes.
    Wataha JC; Lewis JB; Lockwood PE; Rakich DR
    J Oral Rehabil; 2000 Jun; 27(6):508-16. PubMed ID: 10888278
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.