These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 31750845)

  • 1. A shared-weight neural network architecture for predicting molecular properties.
    Profitt TA; Pearson JK
    Phys Chem Chem Phys; 2019 Dec; 21(47):26175-26183. PubMed ID: 31750845
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transferable Multilevel Attention Neural Network for Accurate Prediction of Quantum Chemistry Properties via Multitask Learning.
    Liu Z; Lin L; Jia Q; Cheng Z; Jiang Y; Guo Y; Ma J
    J Chem Inf Model; 2021 Mar; 61(3):1066-1082. PubMed ID: 33629839
    [TBL] [Abstract][Full Text] [Related]  

  • 3. wACSF-Weighted atom-centered symmetry functions as descriptors in machine learning potentials.
    Gastegger M; Schwiedrzik L; Bittermann M; Berzsenyi F; Marquetand P
    J Chem Phys; 2018 Jun; 148(24):241709. PubMed ID: 29960372
    [TBL] [Abstract][Full Text] [Related]  

  • 4. FCHL revisited: Faster and more accurate quantum machine learning.
    Christensen AS; Bratholm LA; Faber FA; Anatole von Lilienfeld O
    J Chem Phys; 2020 Jan; 152(4):044107. PubMed ID: 32007071
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of Symmetry Functions to Large Chemical Spaces Using a Convolutional Neural Network.
    Selvaratnam B; Koodali RT; Miró P
    J Chem Inf Model; 2020 Apr; 60(4):1928-1935. PubMed ID: 32053367
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Systematic Identification of Atom-Centered Symmetry Functions for the Development of Neural Network Potentials.
    Mudassir MW; Goverapet Srinivasan S; Mynam M; Rai B
    J Phys Chem A; 2022 Nov; 126(44):8337-8347. PubMed ID: 36300823
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting Molecular Energy Using Force-Field Optimized Geometries and Atomic Vector Representations Learned from an Improved Deep Tensor Neural Network.
    Lu J; Wang C; Zhang Y
    J Chem Theory Comput; 2019 Jul; 15(7):4113-4121. PubMed ID: 31142110
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PhysNet: A Neural Network for Predicting Energies, Forces, Dipole Moments, and Partial Charges.
    Unke OT; Meuwly M
    J Chem Theory Comput; 2019 Jun; 15(6):3678-3693. PubMed ID: 31042390
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accurate modeling of the potential energy surface of atmospheric molecular clusters boosted by neural networks.
    Kubečka J; Ayoubi D; Tang Z; Knattrup Y; Engsvang M; Wu H; Elm J
    Env Sci Adv; 2024 Oct; 3(10):1438-1451. PubMed ID: 39176037
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of the Characteristics of Quantum Chemical Databases on Machine Learning Prediction of Tautomerization Energies.
    Vazquez-Salazar LI; Boittier ED; Unke OT; Meuwly M
    J Chem Theory Comput; 2021 Aug; 17(8):4769-4785. PubMed ID: 34288675
    [TBL] [Abstract][Full Text] [Related]  

  • 11. AP-Net: An atomic-pairwise neural network for smooth and transferable interaction potentials.
    Glick ZL; Metcalf DP; Koutsoukas A; Spronk SA; Cheney DL; Sherrill CD
    J Chem Phys; 2020 Jul; 153(4):044112. PubMed ID: 32752707
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Toward Fast and Reliable Potential Energy Surfaces for Metallic Pt Clusters by Hierarchical Delta Neural Networks.
    Sun G; Sautet P
    J Chem Theory Comput; 2019 Oct; 15(10):5614-5627. PubMed ID: 31465216
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantum-chemical insights from deep tensor neural networks.
    Schütt KT; Arbabzadah F; Chmiela S; Müller KR; Tkatchenko A
    Nat Commun; 2017 Jan; 8():13890. PubMed ID: 28067221
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-Dimensional Convolutional Neural Networks Utilizing Molecular Topological Features for Accurate Atomization Energy Predictions.
    Gupta AK; Raghavachari K
    J Chem Theory Comput; 2022 Apr; 18(4):2132-2143. PubMed ID: 35226496
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Machine learning approach for describing vibrational solvatochromism.
    Kwac K; Cho M
    J Chem Phys; 2020 May; 152(17):174101. PubMed ID: 32384851
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dataset's chemical diversity limits the generalizability of machine learning predictions.
    Glavatskikh M; Leguy J; Hunault G; Cauchy T; Da Mota B
    J Cheminform; 2019 Nov; 11(1):69. PubMed ID: 33430991
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fast and Accurate Molecular Property Prediction: Learning Atomic Interactions and Potentials with Neural Networks.
    Tsubaki M; Mizoguchi T
    J Phys Chem Lett; 2018 Oct; 9(19):5733-5741. PubMed ID: 30081630
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accurate and transferable multitask prediction of chemical properties with an atoms-in-molecules neural network.
    Zubatyuk R; Smith JS; Leszczynski J; Isayev O
    Sci Adv; 2019 Aug; 5(8):eaav6490. PubMed ID: 31448325
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular partition coefficient from machine learning with polarization and entropy embedded atom-centered symmetry functions.
    Zhu Q; Jia Q; Liu Z; Ge Y; Gu X; Cui Z; Fan M; Ma J
    Phys Chem Chem Phys; 2022 Oct; 24(38):23082-23088. PubMed ID: 36134471
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Machine Learning Prediction of Nine Molecular Properties Based on the SMILES Representation of the QM9 Quantum-Chemistry Dataset.
    Pinheiro GA; Mucelini J; Soares MD; Prati RC; Da Silva JLF; Quiles MG
    J Phys Chem A; 2020 Nov; 124(47):9854-9866. PubMed ID: 33174750
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.