These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 31750881)

  • 1. HDAC11 deficiency disrupts oncogene-induced hematopoiesis in myeloproliferative neoplasms.
    Yue L; Sharma V; Horvat NP; Akuffo AA; Beatty MS; Murdun C; Colin C; Billington JMR; Goodheart WE; Sahakian E; Zhang L; Powers JJ; Amin NE; Lambert-Showers QT; Darville LN; Pinilla-Ibarz J; Reuther GW; Wright KL; Conti C; Lee JY; Zheng X; Ng PY; Martin MW; Marshall CG; Koomen JM; Levine RL; Verma A; Grimes HL; Sotomayor EM; Shao Z; Epling-Burnette PK
    Blood; 2020 Jan; 135(3):191-207. PubMed ID: 31750881
    [TBL] [Abstract][Full Text] [Related]  

  • 2. HDAC8 overexpression in mesenchymal stromal cells from JAK2+ myeloproliferative neoplasms: a new therapeutic target?
    Ramos TL; Sánchez-Abarca LI; Redondo A; Hernández-Hernández Á; Almeida AM; Puig N; Rodríguez C; Ortega R; Preciado S; Rico A; Muntión S; Porras JRG; Del Cañizo C; Sánchez-Guijo F
    Oncotarget; 2017 Apr; 8(17):28187-28202. PubMed ID: 28390197
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Histone deacetylases inhibitor sodium butyrate inhibits JAK2/STAT signaling through upregulation of SOCS1 and SOCS3 mediated by HDAC8 inhibition in myeloproliferative neoplasms.
    Gao SM; Chen CQ; Wang LY; Hong LL; Wu JB; Dong PH; Yu FJ
    Exp Hematol; 2013 Mar; 41(3):261-70.e4. PubMed ID: 23111066
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Epigenetic deregulated miR-375 contributes to the constitutive activation of JAK2/STAT signaling in myeloproliferative neoplasm.
    Yin LH; Zheng XQ; Li HY; Bi LX; Shi YF; Ye AF; Wu JB; Gao SM
    Leuk Res; 2015 Apr; 39(4):471-8. PubMed ID: 25666256
    [TBL] [Abstract][Full Text] [Related]  

  • 5. JAK-STAT pathway activation in malignant and nonmalignant cells contributes to MPN pathogenesis and therapeutic response.
    Kleppe M; Kwak M; Koppikar P; Riester M; Keller M; Bastian L; Hricik T; Bhagwat N; McKenney AS; Papalexi E; Abdel-Wahab O; Rampal R; Marubayashi S; Chen JJ; Romanet V; Fridman JS; Bromberg J; Teruya-Feldstein J; Murakami M; Radimerski T; Michor F; Fan R; Levine RL
    Cancer Discov; 2015 Mar; 5(3):316-31. PubMed ID: 25572172
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cotargeting the JAK/STAT signaling pathway and histone deacetylase by ruxolitinib and vorinostat elicits synergistic effects against myeloproliferative neoplasms.
    Hao X; Xing W; Yuan J; Wang Y; Bai J; Bai J; Zhou Y
    Invest New Drugs; 2020 Jun; 38(3):610-620. PubMed ID: 31227936
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dual targeting of JAK2 and ERK interferes with the myeloproliferative neoplasm clone and enhances therapeutic efficacy.
    Brkic S; Stivala S; Santopolo A; Szybinski J; Jungius S; Passweg JR; Tsakiris D; Dirnhofer S; Hutter G; Leonards K; Lischer HEL; Dettmer MS; Neel BG; Levine RL; Meyer SC
    Leukemia; 2021 Oct; 35(10):2875-2884. PubMed ID: 34480104
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The HDAC inhibitor Givinostat modulates the hematopoietic transcription factors NFE2 and C-MYB in JAK2(V617F) myeloproliferative neoplasm cells.
    Amaru Calzada A; Todoerti K; Donadoni L; Pellicioli A; Tuana G; Gatta R; Neri A; Finazzi G; Mantovani R; Rambaldi A; Introna M; Lombardi L; Golay J;
    Exp Hematol; 2012 Aug; 40(8):634-45.e10. PubMed ID: 22579713
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic Vulnerabilities and Epigenetic Dysregulation in Myeloproliferative Neoplasms.
    Sharma V; Wright KL; Epling-Burnette PK; Reuther GW
    Front Immunol; 2020; 11():604142. PubMed ID: 33329600
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heterodimeric JAK-STAT activation as a mechanism of persistence to JAK2 inhibitor therapy.
    Koppikar P; Bhagwat N; Kilpivaara O; Manshouri T; Adli M; Hricik T; Liu F; Saunders LM; Mullally A; Abdel-Wahab O; Leung L; Weinstein A; Marubayashi S; Goel A; Gönen M; Estrov Z; Ebert BL; Chiosis G; Nimer SD; Bernstein BE; Verstovsek S; Levine RL
    Nature; 2012 Sep; 489(7414):155-9. PubMed ID: 22820254
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activation of JAK/STAT Signaling in Megakaryocytes Sustains Myeloproliferation
    Woods B; Chen W; Chiu S; Marinaccio C; Fu C; Gu L; Bulic M; Yang Q; Zouak A; Jia S; Suraneni PK; Xu K; Levine RL; Crispino JD; Wen QJ
    Clin Cancer Res; 2019 Oct; 25(19):5901-5912. PubMed ID: 31217200
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metformin exerts multitarget antileukemia activity in JAK2
    Machado-Neto JA; Fenerich BA; Scopim-Ribeiro R; Eide CA; Coelho-Silva JL; Dechandt CRP; Fernandes JC; Rodrigues Alves APN; Scheucher PS; Simões BP; Alberici LC; de Figueiredo Pontes LL; Tognon CE; Druker BJ; Rego EM; Traina F
    Cell Death Dis; 2018 Feb; 9(3):311. PubMed ID: 29472557
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Curcumin induces apoptosis in JAK2-mutated cells by the inhibition of JAK2/STAT and mTORC1 pathways.
    Petiti J; Rosso V; Lo Iacono M; Panuzzo C; Calabrese C; Signorino E; Pironi L; Cartellà A; Bracco E; Pergolizzi B; Beltramo T; Fava C; Cilloni D
    J Cell Mol Med; 2019 Jun; 23(6):4349-4357. PubMed ID: 31033209
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MPLW515L is a novel somatic activating mutation in myelofibrosis with myeloid metaplasia.
    Pikman Y; Lee BH; Mercher T; McDowell E; Ebert BL; Gozo M; Cuker A; Wernig G; Moore S; Galinsky I; DeAngelo DJ; Clark JJ; Lee SJ; Golub TR; Wadleigh M; Gilliland DG; Levine RL
    PLoS Med; 2006 Jul; 3(7):e270. PubMed ID: 16834459
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Development and Use of Janus Kinase 2 Inhibitors for the Treatment of Myeloproliferative Neoplasms.
    Hobbs GS; Rozelle S; Mullally A
    Hematol Oncol Clin North Am; 2017 Aug; 31(4):613-626. PubMed ID: 28673391
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Discovery and evaluation of ZT55, a novel highly-selective tyrosine kinase inhibitor of JAK2
    Hu M; Xu C; Yang C; Zuo H; Chen C; Zhang D; Shi G; Wang W; Shi J; Zhang T
    J Exp Clin Cancer Res; 2019 Feb; 38(1):49. PubMed ID: 30717771
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The thrombopoietin receptor, MPL, is critical for development of a JAK2V617F-induced myeloproliferative neoplasm.
    Sangkhae V; Etheridge SL; Kaushansky K; Hitchcock IS
    Blood; 2014 Dec; 124(26):3956-63. PubMed ID: 25339357
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The glutaminase inhibitor CB-839 targets metabolic dependencies of JAK2-mutant hematopoiesis in MPN.
    Usart M; Hansen N; Stetka J; Almeida Fonseca T; Guy A; Kimmerlin Q; Rai S; Hao-Shen H; Roux J; Dirnhofer S; Skoda RC
    Blood Adv; 2024 May; 8(9):2312-2325. PubMed ID: 38295283
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Jmjd1c is dispensable for healthy adult hematopoiesis and Jak2V617F-driven myeloproliferative disease initiation in mice.
    Staehle HF; Heinemann J; Gruender A; Omlor AM; Pahl HL; Jutzi JS
    PLoS One; 2020; 15(2):e0228362. PubMed ID: 32017785
    [TBL] [Abstract][Full Text] [Related]  

  • 20. TG101209, a small molecule JAK2-selective kinase inhibitor potently inhibits myeloproliferative disorder-associated JAK2V617F and MPLW515L/K mutations.
    Pardanani A; Hood J; Lasho T; Levine RL; Martin MB; Noronha G; Finke C; Mak CC; Mesa R; Zhu H; Soll R; Gilliland DG; Tefferi A
    Leukemia; 2007 Aug; 21(8):1658-68. PubMed ID: 17541402
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.