These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 31751122)

  • 1. Enhanced Population Control in a Synthetic Bacterial Consortium by Interconnected Carbon Cross-Feeding.
    Losoi PS; Santala VP; Santala SM
    ACS Synth Biol; 2019 Dec; 8(12):2642-2650. PubMed ID: 31751122
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rationally engineered synthetic coculture for improved biomass and product formation.
    Santala S; Karp M; Santala V
    PLoS One; 2014; 9(12):e113786. PubMed ID: 25470793
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic engineering of Acinetobacter baylyi ADP1 for improved growth on gluconate and glucose.
    Kannisto M; Aho T; Karp M; Santala V
    Appl Environ Microbiol; 2014 Nov; 80(22):7021-7. PubMed ID: 25192990
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthetic Escherichia coli consortia engineered for syntrophy demonstrate enhanced biomass productivity.
    Bernstein HC; Paulson SD; Carlson RP
    J Biotechnol; 2012 Jan; 157(1):159-66. PubMed ID: 22015987
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering microbial consortia by division of labor.
    Roell GW; Zha J; Carr RR; Koffas MA; Fong SS; Tang YJ
    Microb Cell Fact; 2019 Feb; 18(1):35. PubMed ID: 30736778
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acinetobacter baylyi ADP1-naturally competent for synthetic biology.
    Santala S; Santala V
    Essays Biochem; 2021 Jul; 65(2):309-318. PubMed ID: 33769448
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Environment Constrains Fitness Advantages of Division of Labor in Microbial Consortia Engineered for Metabolite Push or Pull Interactions.
    Beck AE; Pintar K; Schepens D; Schrammeck A; Johnson T; Bleem A; Du M; Harcombe WR; Bernstein HC; Heys JJ; Gedeon T; Carlson RP
    mSystems; 2022 Aug; 7(4):e0005122. PubMed ID: 35762764
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acinetobacter baylyi ADP1 growth performance and lipid accumulation on different carbon sources.
    Salcedo-Vite K; Sigala JC; Segura D; Gosset G; Martinez A
    Appl Microbiol Biotechnol; 2019 Aug; 103(15):6217-6229. PubMed ID: 31144015
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design, construction, and characterization methodologies for synthetic microbial consortia.
    Bernstein HC; Carlson RP
    Methods Mol Biol; 2014; 1151():49-68. PubMed ID: 24838878
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Majority sensing in synthetic microbial consortia.
    Alnahhas RN; Sadeghpour M; Chen Y; Frey AA; Ott W; Josić K; Bennett MR
    Nat Commun; 2020 Jul; 11(1):3659. PubMed ID: 32694598
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A molecular toolkit of cross-feeding strains for engineering synthetic yeast communities.
    Peng H; Darlington APS; South EJ; Chen HH; Jiang W; Ledesma-Amaro R
    Nat Microbiol; 2024 Mar; 9(3):848-863. PubMed ID: 38326570
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The De Novo Synthesis of 2-Phenylethanol from Glucose by the Synthetic Microbial Consortium Composed of Engineered
    Yan W; Gao H; Jiang W; Jiang Y; Lin CSK; Zhang W; Xin F; Jiang M
    ACS Synth Biol; 2022 Dec; 11(12):4018-4030. PubMed ID: 36368021
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design of mutualistic microbial consortia for stable conversion of carbon monoxide to value-added chemicals.
    Cha S; Lim HG; Kwon S; Kim DH; Kang CW; Jung GY
    Metab Eng; 2021 Mar; 64():146-153. PubMed ID: 33571657
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Applications of synthetic yeast consortia for the production of native and non-native chemicals.
    Darvishi F; Rafatiyan S; Abbaspour Motlagh Moghaddam MH; Atkinson E; Ledesma-Amaro R
    Crit Rev Biotechnol; 2024 Feb; 44(1):15-30. PubMed ID: 36130800
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthetic, Context-Dependent Microbial Consortium of Predator and Prey.
    Liu F; Mao J; Lu T; Hua Q
    ACS Synth Biol; 2019 Aug; 8(8):1713-1722. PubMed ID: 31382741
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A programmable Escherichia coli consortium via tunable symbiosis.
    Kerner A; Park J; Williams A; Lin XN
    PLoS One; 2012; 7(3):e34032. PubMed ID: 22479509
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthetic microbial consortium with specific roles designated by genetic circuits for cooperative chemical production.
    Honjo H; Iwasaki K; Soma Y; Tsuruno K; Hamada H; Hanai T
    Metab Eng; 2019 Sep; 55():268-275. PubMed ID: 31401244
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering Microbial Consortia as Living Materials: Advances and Prospectives.
    Wang S; Zhan Y; Jiang X; Lai Y
    ACS Synth Biol; 2024 Sep; 13(9):2653-2666. PubMed ID: 39174016
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SYNTHETIC BIOLOGY. Emergent genetic oscillations in a synthetic microbial consortium.
    Chen Y; Kim JK; Hirning AJ; Josić K; Bennett MR
    Science; 2015 Aug; 349(6251):986-9. PubMed ID: 26315440
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optogenetic Control of Microbial Consortia Populations for Chemical Production.
    Lalwani MA; Kawabe H; Mays RL; Hoffman SM; Avalos JL
    ACS Synth Biol; 2021 Aug; 10(8):2015-2029. PubMed ID: 34351122
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.